- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- yolo 目标检测600类目标
大霸王龙
行业+领域+业务场景=定制YOLO目标检测人工智能
1.模型架构调整类别适配:将YOLO输出层的类别节点数调整为600(如YOLOv5的detect.yaml中修改nc=600),并更新类别名称映射表(classes.txt)。骨干网络优化:若使用YOLOv5/v8,可升级骨干网络(如C3模块深度)或替换为更高性能的主干(如EfficientNet、ResNet-101),以增强复杂场景的特征提取能力。多尺度检测头:保留或扩展YOLO的多尺度输出(
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- yolo检测常见指标
bigdata从入门到放弃
深度学习yoloYOLO目标跟踪人工智能深度学习
YOLO(YouOnlyLookOnce)作为经典的单阶段目标检测算法,其性能评估依赖于目标检测领域的通用指标。这些指标既衡量检测精度(是否准确识别物体类别、准确定位),也衡量检测速度(是否实时)。下面用通俗的语言详细解释核心指标:一、基础:判断“预测框是否有效”——IoU(交并比)目标检测的核心是“预测框”(模型输出的矩形框)是否准确覆盖“真实框”(人工标注的物体位置)。IoU是衡量两者重叠程度
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- PyTorch武侠演义 第一卷:初入江湖 第7章:矿洞中的计算禁制
空中湖
pytorch武侠演绎pytorch人工智能python
第一卷:初入江湖第7章:矿洞中的计算禁制矿洞深处罗盘残件在接近矿洞时突然发热,指针疯狂旋转。"就是这里,"欧阳长老抚摸着洞壁上的计算图刻痕,“TensorFlow帮用静态图封印了矿脉。”林小码看到:幽蓝矿脉构成巨大的计算图结构水晶矿簇随呼吸节奏明灭(CUDA核心)矿道中流淌着数据光流(内存带宽)"小心!"大师突然拉回林小码。他刚才踩中的矿砖下陷,触发岩壁上的机关——数十道计算图锁链从四面八方射来!
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- YOLOv4详细介绍
不是二哈的柯基
YOLO系列深度学习pdfYOLO计算机视觉
YOLOv4是一种目标检测算法,是YOLO(YouOnlyLookOnce)系列的最新版本,由AlexeyBochkovskiy、Chien-YaoWang和Hong-YuanMarkLiao共同提出。相比于之前的版本,YOLOv4在速度和精度方面都有了显著的提升。下面是YOLOv4的一些详细介绍:模型结构YOLOv4采用了一种新的模型结构,称为CSPDarknet。这个结构类似于ResNet的残
- YOLOv4 介绍及其模型优化方法
1、YOLOv4介绍2020年4月,YOLOv4在悄无声息中重磅发布,在目标检测领域引起广泛的讨论。在YOLO系列的原作者JosephRedmon宣布退出CV领域后,表明官方不再更新YOLOv3。但在过去的两年中,AlexeyAB继承了YOLO系列的思想和理念,在YOLOv3的基础上不断进行改进和开发,于今年4月发布YOLOv4,并得到了原作者JosephRedmon的承认。YOLOv4可以使用传
- 【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO目标跟踪人工智能目标检测计算机视觉论文阅读
YOLOv4详解:模型结构、损失函数、训练方法及代码实现motivationYOLO系列作者JosephRedmon与AlexeyBochkovskiy致力于解决目标检测领域的核心矛盾:精度与速度的平衡。YOLOv4的诞生源于两大需求:工业落地:在移动端/边缘设备实现实时检测(>30FPS)学术突破:无需昂贵算力(如1080Ti即可训练),在MSCOCO数据集达到SOTAmethods1.数据加载
- OpenCV基础02_图像预处理
白槿_cha
计算机视觉基础opencv人工智能计算机视觉笔记
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学一、图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂
- 破解电梯场景难题:陌讯识别算法 mAP 达 98.7%
2501_92474790
算法计算机视觉目标检测智慧城市目标跟踪
开篇痛点:电梯间电动车识别的行业困局传统视觉算法在电梯间电动车检测场景中始终面临三重挑战:复杂光线环境下(如强光直射、夜间低照度)目标特征提取不稳定,电动车与婴儿车、行李箱等相似物体的误判率高达35%;电梯轿厢狭小空间导致目标畸变严重,小目标检测漏检率超过20%;普通模型在边缘设备部署时难以兼顾精度与速度,FPS普遍低于15帧[实测数据显示]。这些问题直接导致物业安防系统告警泛滥,真正的安全隐患却
- 夜间监控模糊不清?陌讯低光目标检测方案解读
2501_92474779
目标跟踪人工智能计算机视觉算法目标检测
开篇痛点:安防监控的检测困局在智慧城市建设浪潮下,安防监控面临核心矛盾:复杂场景中传统算法的泛化性短板日益凸显。某市级公安部门数据显示,夜间监控的误报率高达34%,雨雾天气下漏检率超40%。更严峻的是,密集人流场景中YOLOv5的ID丢失率达28%,实时预警几乎瘫痪——这恰是陌讯视觉算法v3.2的破局切入点。技术解析:三阶时空融合架构传统单帧检测在遮挡场景易失效,陌讯的创新在于时空联合建模:#陌讯
- 实时检测延迟超200ms?陌讯新框架FPS提速50%揭晓
2501_92474779
目标跟踪人工智能计算机视觉机器学习算法视觉检测
开篇痛点在现代安防监控场景中,实时目标检测(Real-timeObjectDetection)至关重要,但传统算法如FasterR-CNN或YOLOv5往往面临严峻挑战。实测数据显示:复杂环境下(如夜间低光照、人群密集区),漏检率(MissRate)高达15-20%,导致安全隐患;同时,检测延迟(Latency)常超过200ms,影响应急响应。例如,某城市交通监控系统报告,在雨雾天气中的车辆误报率
- 智慧零售 AI 卡顿?陌讯轻量化方案 FPS 升 40%
2501_92722744
零售人工智能目标跟踪计算机视觉目标检测算法
一、开篇痛点:智慧零售视觉算法的三大行业困境在智慧零售场景中,传统视觉算法正面临着难以突破的技术瓶颈。自助结算台的商品误识别率常高达12%-18%,导致消费者频繁触发人工核验;复杂货架场景下,商品重叠、光照变化和包装相似性问题,使得目标检测漏检率超过20%;而边缘设备的算力限制,又让实时推理帧率(FPS)普遍低于25,无法满足流畅交互需求[1]。这些问题直接造成商超运营成本增加30%以上,严重制约
- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- 数字人克隆中SyncTalk算法介绍与部署过程
优秘智能UMI
人工智能ubuntu
SyncTalk算法介绍SyncTalk合成同步的头部说话视频,采用三平面哈希表示来保持主体身份。它可以生成同步的嘴唇动作、面部表情和稳定的头部姿势,并恢复头发细节以创建高分辨率视频。部署在Linux中部署该项目,在Ubuntu18.04、Pytorch1.12.1和CUDA11.3上测试。gitclonehttps://github.com/ZiqiaoPeng/SyncTalk.gitcdSy
- 风格迁移(Style Transfer)
1.什么是风格迁移(StyleTransfer):简单介绍风格迁移的概念,指的是将一张图像的内容与另一张图像的艺术风格结合起来,从而生成一个新的图像。例如,将一张风景图像的内容与一幅著名艺术作品(如梵高的《星夜》)的风格结合。应用场景:风格迁移常用于图像生成、艺术创作和增强现实等领域。目标:本文将讲解如何使用PyTorch和VGG19模型实现风格迁移,并展示其核心代码。2.风格迁移的原理在这一部分
- [毕业设计]一些基于yolov5项目高分毕业项目源码下载地址汇总
海神之光.
毕设课程设计YOLO
项目名称下载地址车辆检测计数+车牌定位+车牌识别的yolov4模板检测与yolov5车牌检测与LPRNet车牌检测源码+模型+详细说明.zip点我下载基于改进后的YOLOv5目标检测模型实现人群密度检测系统源码+模型+详细说明.zip点我下载基于YOLOv5实现微藻智能化在线检测系统源码+图片+说明文档.zip点我下载YOLOv5deepsort算法船舶等交通工具监测计数UI界面源码.zip点我下
- 基于YOLOv5+pyQT6的目标检测系统通用项目模板
本项目开发基于YOLOv5+pyQT6的目标检测项目,用来集成YOLO的目标检测系统,作为该类系统的开发模板,旨在通过替换模型文件即可进行照片、视频、摄像视频流的检测,设置日志系统,记录系统的每一步操作,并集成其他功能作为该模板的辅助功能。具体效果如下:yolo目标检测系统模板1.概述智能目标检测系统V2.1是一款基于PyQt6和YOLOv5模型开发的桌面应用程序。它提供了一个现代化、直观且功能丰
- 标签助手:基于LabelImg和YOLOv5的图像半自动标注工具
伏容一Julia
标签助手:基于LabelImg和YOLOv5的图像半自动标注工具项目基础介绍标签助手(labelGo-Yolov5AutoLabelImg)是一个图形化的半自动图像注解工具,它结合了广受欢迎的图像标注工具LabelImg的力量与先进的目标检测框架YOLOv5。这个开源项目旨在简化数据集的标注过程,利用现有YOLOv5PyTorch模型实现快速的半自动化标注,极大地提高了标注效率。项目主要采用Pyt
- YOLO13:基于超图增强自适应视觉感知的实时目标检测
alpszero
YOLO计算机视觉应用目标检测人工智能计算机视觉YOLO13
YOLO13:基于超图增强自适应视觉感知的实时目标检测论文:YOLOv13:Real-TimeObjectDetectionwithHypergraph-EnhancedAdaptiveVisualPerception代码:https://github.com/iMoonLab/yolov13YOLOv13主要技术YOLOv13新一代实时检测器,集卓越性能与效率于一身。YOLOv13系列包含四种变
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- RK3568笔记九十三:基于RKNN Lite的YOLOv5目标检测
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。一、介绍Yolov5是一种目标检测算法,属于单阶段目标检测方法,是在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。最新的YOLOv5v7.0有YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x等,除了目标检测,
- opencv-day2-图像预处理1
谢眠
OpenCVopencv计算机视觉
图像预处理在计算机视觉和图像处理领域,图像预处理能够提高后续处理(如特征提取、目标检测等)的准确性和效率。常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂直翻转或同时水平和垂直翻转。这个函数接受两个参数:要翻转的图像和一个指定翻
- 【2025目标检测】最新论文
weixin_37763484
计算机视觉人工智能计算机视觉目标检测
2025目标检测最新进展第一章开放世界范式:统一已知与未知对象的检测在推动人工智能系统走向真实、动态环境的过程中,使其具备检测超出预定义训练类别范围之外物体的能力至关重要。2025年的研究显著地体现了这一“开放世界”范式的成熟,其标志是从解决孤立问题(如零样本、少样本或开集检测)转向构建能够处理不同程度“开放性”的统一框架。这一转变的核心在于,研究界正在从证明特定开放世界任务的可行性,转向开发更具
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts