- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- GraphFlow:AutoGen 中构建多智能体工作流的可视化编程方案
佑瞻
AutoGenAutoGen
在开发多智能体系统时,我们常常面临这样的挑战:如何让多个智能体按照预设流程协作,同时又能灵活应对不同场景的变化?AutoGen框架中的GraphFlow(工作流)组件为这个问题提供了优雅的解决方案。它就像智能体团队的"流程图编辑器",让我们可以用可视化的方式定义智能体的协作流程,实现从顺序执行到条件循环的复杂逻辑。今天我们就来深入探讨这个强大的多智能体流程控制工具。一、GraphFlow核心概念与
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- CIRL:因果启发的表征学习框架——从域泛化到奖励分解的因果革命
大千AI助手
人工智能Python#OTHER学习深度学习人工智能机器学习表征学习因果推断域泛化
CIRL(因果启发的表征学习)是由国内顶尖AI研究团队于CVPR2022提出的创新框架,最初用于解决域泛化(DomainGeneralization,DG)问题,其核心思想是通过结构因果模型(SCM)分离数据中的因果与非因果因素,构建鲁棒表征。后续研究(如GRD、Diaster算法)将其扩展至强化学习的奖励分解领域,通过因果充分性、稀疏性与正交性约束,解决延迟奖励与奖励黑客问题。原始论文发表于CV
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- 多智能体大语言模型系统频频翻车?三大失败根源与解决方案全解析
shengjk1
MCPAIGC人工智能python自然语言处理AIGCAgent后端mcp
你好,我是shengjk1,多年大厂经验,努力构建通俗易懂的、好玩的编程语言教程。欢迎关注!你会有如下收益:了解大厂经验拥有和大厂相匹配的技术等希望看什么,评论或者私信告诉我!文章目录一、研究背景:理想很丰满,现实很骨感二、MAST分类学:揭开MAS失败的“真面目”1.规格设计问题(占比41.8%):从源头埋下的“雷”2.智能体协作失调(占比36.9%):团队协作的“翻车现场”3.任务验证缺陷(占
- 基于强化学习的工业SCR脱硝系统控制算法设计与实现
pk_xz123456
算法python人工智能python深度学习数据挖掘
基于强化学习的工业SCR脱硝系统控制算法设计与实现1.引言选择性催化还原(SCR)脱硝系统是火电厂等工业设施中用于降低氮氧化物(NOx)排放的关键环保设备。传统的PID控制方法在面对SCR系统非线性、大滞后等特性时往往表现不佳。本文将详细介绍如何利用强化学习技术设计智能控制器,实现SCR脱硝系统的优化控制。2.系统概述与问题分析2.1SCR脱硝系统工作原理SCR系统通过在催化剂作用下,向烟气中喷入
- 【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究Matlab代码
Matlab科研工作室
无人机边缘计算matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- 10、云安全框架与控制体系解析
k9l0m1
探索云安全:从理论到实践云安全安全框架数据安全
云安全框架与控制体系解析1.云安全框架概述在云计算环境中,数据安全至关重要。为确保用户数据在云端的机密性、正确性、可用性和完整性,提出了一种安全框架和多智能体系统(MAS)架构来促进云数据存储(CDS)的安全性。1.1安全框架结构该安全框架主要由两层组成:-代理层:包含多种智能代理,负责不同的数据安全任务。-云数据存储层:用于实际的数据存储。1.2MAS架构中的智能代理MAS架构包括五种类型的代理
- AI人工智能领域深度学习的机器人控制技术
AI智能架构工坊
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习机器人ai
AI人工智能领域深度学习的机器人控制技术:让机器人像人类一样“聪明”行动关键词:深度学习、机器人控制、强化学习、端到端控制、具身智能摘要:本文将带您走进“深度学习+机器人控制”的奇妙世界。我们会用“教机器人端咖啡”这样的生活案例,从核心概念讲到底层原理,再通过实战代码演示如何用深度学习让机器人完成复杂任务。无论您是技术小白还是开发者,都能轻松理解深度学习如何赋予机器人“思考”和“适应”能力,以及未
- 第十四章、完全合作关系设定下的多智能体强化学习(MAC-A2C)
跳跳糖炒酸奶
强化学习算法强化学习人工智能python算法
0前言根据上一章的内容,已知完全合作关系下的多智能体利益一致有相同的目标,获得的奖励相同即Rt1=Rt2=Rt3R^1_t=R^2_t=R^3_tRt1=Rt2=Rt3。1完全合作关系设定下的策略学习要注意的点:状态S=[O1,O2,⋯ ,Om]S=[O^1,O^2,\cdots,O^m]S=[O1,O2,⋯,Om],所有智能体的观测之和是状态。动作A=[A1,A2,⋯ ,Am]A=[A^1,A^
- Kimi-Researcher 技术实现深度解析
李昕壑
人工智能
Kimi-Researcher是一款基于端到端自主强化学习技术构建的智能研究助手,其核心技术在于通过单一模型自主决策和执行复杂研究任务,无需预设工作流程。它具备轻量化的长时记忆机制和潜在的多模态处理能力,能够高效地进行并行搜索和灵活的工具调用,从而完成从信息搜集、分析到报告生成的全过程。1.Kimi-Researcher核心工作机制概述Kimi-Researcher作为一款专注于深度研究的Agen
- PPO:强化学习中的近端策略优化——原理、演进与大规模应用实践
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法PPO近端策略优化优化
近端策略优化(ProximalPolicyOptimization,PPO)是由OpenAI团队于2017年提出的策略梯度强化学习算法,通过裁剪概率比目标函数约束策略更新幅度,解决了传统策略梯度方法训练不稳定、易发散的核心问题。该算法兼具信赖域策略优化(TRPO)的稳定性与一阶优化的简洁性,已成为深度强化学习(DRL)和大语言模型对齐(RLHF)的事实标准算法。本文由「大千AI助手」原创发布,专注
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- Spring AI Alibaba:企业级 AI 应用开发框架
培风图南以星河揽胜
人工智能javaspring人工智能java
项目概述SpringAIAlibaba简介SpringAIAlibaba是一个基于SpringAI构建的AI应用开发框架,专为Java开发者设计,深度集成阿里云百炼平台,致力于简化AI应用的构建、部署与管理。该框架不仅支持基础的对话式AI应用(如ChatBot),还提供强大的多智能体(Multi-agent)系统开发能力,适用于企业级复杂业务场景。项目定位:面向Java开发者的AI应用开发框架,融
- 大模型就业方向
有如下几个方向:基座模型训练工作内容:优化模型结构、数据比例,实现在各种任务上效果比较好的通用基座模型护城河:出了问题只有你能解决,给足情绪价值经验要求:必备:模型分布式框架(如deepspeed)、多机多卡训练、顶会的经验;阅读一系列LLM经典论文,例如Instruct-GPT、LORA等,从而对LLM有一个更深入、透彻的掌握。同任选:万卡集群的训练经验(包括预训练、sft、强化学习)、踩坑经验
- MetaGPT源码剖析(三):多智能体系统的 “智能角色“ 核心实现——Role类
ATM006
开源Agent框架机器智能人工智能大模型Agent源码剖析MetaGPT
每一篇文章都短小精悍,不啰嗦。今天我们来深入剖析Role类的代码实现。在多智能体协作系统中,Role(角色)就像现实世界中的"员工",是执行具体任务、参与协作的基本单位。这段代码是MetaGPT框架的核心,它定义了一个角色从"接收信息"到"做出决策"再到"执行任务"的完整生命周期。一、类的整体结构与核心定位1.继承关系:能力的组合classRole(BaseRole,SerializationMi
- 使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
茫茫人海一粒沙
Lorallama
本文将介绍如何基于Meta的LLaMA38B模型构建并微调一个RewardModel,它是构建RLHF(基于人类反馈的强化学习)系统中的关键一环。我们将使用HuggingFace的transformers、trl和peft等库,通过参数高效微调(LoRA)实现高质量RewardModel的训练。什么是RewardModel?RewardModel(RM)是RLHF流程中的评分器,它学习人类偏好:在
- 20250704-基于强化学习在云计算环境中的虚拟机资源调度研究
基于强化学习在云计算环境中的虚拟机资源调度研究随着云计算规模的持续扩大,数据中心虚拟机资源调度面临动态负载、异构资源适配及多目标优化等挑战。传统启发式算法在复杂场景下易陷入局部最优,而深度强化学习(DRL)凭借序贯决策能力为该问题提供了新路径。本研究以动态多目标组合优化理论为基础,结合CloudSimPy仿真框架与TensorFlow,构建“仿真-训练-验证”闭环调度系统,重点设计动态加权多目标奖
- LLM指纹底层技术——人类反馈强化学习
9命怪猫
AI深度学习机器学习人工智能大模型ai算法
以下简单讲一下“LLM指纹”体系中,负责精雕细琢模型“性格”与“价值观”的核心工艺——人类反馈强化学习(ReinforcementLearningfromHumanFeedback,RLHF)。预训练给模型注入了海量的知识(IQ),指令微调(SFT)教会了它基本的沟通技能(学会说话),RLHF对模型进行的一场深刻的“情商与价值观”教育。这个过程极大地塑造了模型的行为边界、风格偏好和安全意识,是形成
- AI人工智能领域多智能体系统:在智能渔业中的养殖管理应用
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶人工智能ai
AI人工智能领域多智能体系统:在智能渔业中的养殖管理应用关键词:多智能体系统、智能渔业、养殖管理、人工智能、分布式决策、环境监测、自主控制摘要:本文深入探讨了多智能体系统(MAS)在智能渔业养殖管理中的应用。我们将从基础概念出发,分析多智能体系统的架构原理,详细介绍其在渔业环境监测、投喂优化、疾病预警等方面的具体实现方法。文章包含数学模型、算法实现和实际案例,为读者提供从理论到实践的完整知识体系,
- Python强化学习实战:从游戏AI到工业控制的完整指南
全息架构师
AI行业应用实战先锋Python实战项目大揭秘python游戏人工智能
Python人工智能模型训练实战(六):强化学习从入门到工业级应用核心价值前情提要:我们已经完成了监督学习和AutoML的完整流程。本期将探索人工智能的另一个重要领域——让机器通过试错自主学习的强化学习技术!本期亮点:4大核心强化学习算法完整实现从游戏AI到工业控制的实战案例生产环境部署与性能优化技巧分布式强化学习系统架构完整的可运维代码实现强化学习算法对比(表格呈现)算法类型适用场景优势实现模块
- 强化学习在AI Agent资源调度中的应用
AI大模型应用实战
人工智能ai
强化学习在AIAgent资源调度中的应用关键词:强化学习、AIAgent、资源调度、马尔可夫决策过程、策略梯度算法摘要:本文聚焦于强化学习在AIAgent资源调度中的应用。首先介绍了强化学习和AIAgent资源调度的背景知识,明确了文章的目的、范围和预期读者。接着详细阐述了核心概念及其联系,包括强化学习和AIAgent资源调度的原理和架构,并通过Mermaid流程图进行直观展示。深入讲解了核心算法
- AI 驱动自动化运维平台架构与实现
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3算法机器学习人工智能决策树大数据
摘要:随着云计算、容器化和大规模分布式系统的普及,传统人工运维方法已难以满足现代IT环境中海量指标、日志和拓扑关系的实时分析与故障响应需求。AI驱动的自动化运维(AIOps)平台通过融合机器学习、深度学习、图分析以及强化学习等多学科技术,实现对海量运维数据的智能感知、预测、诊断和自动化修复。本文深入探讨AI驱动自动化运维平台的整体架构设计与核心技术实现,涵盖数据采集与预处理、AI引擎设计、自动化执
- 【Python】Gym 库:于开发和比较强化学习(Reinforcement Learning, RL)算法
彬彬侠
Python基础pythonGym强化学习RLGymnasium
Gym是Python中一个广泛使用的开源库,用于开发和比较强化学习(ReinforcementLearning,RL)算法。它最初由OpenAI开发,提供标准化的环境接口,允许开发者在各种任务(如游戏、机器人控制、模拟物理系统)中测试RL算法。Gym的设计简单且灵活,适合学术研究和工业应用。2022年,Gym被整合到Gymnasium(由FaramaFoundation维护)中,成为主流的强化学习
- 京东零售重磅开源 | OxyGent:像搭乐高一样组装AI团队,实现群体智能
京东零售技术
零售开源人工智能
京东零售Oxygen团队正式开源发布多智能体协作框架——OxyGent。这一创新框架致力于帮助开发者高效组装多智能体协作系统,实现智能体间的无缝协作、弹性扩展与全链路可追溯。推动人工智能从“单点突破”迈向“群体智能”时代。OxyGent已在开源社区正式上线。开源地址:https://github.com/jd-opensource/OxyGent官网地址:https://oxygent.jd.co
- 【AI Agent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(2)- 整体流程解析中再看多智能体消息交互通路
同学小张
大模型游戏笔记人工智能AIGCMetaGPTAIAgent多智能体
大家好,我是同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。本文来学习一下MetaGPT的一个实战案例-狼人杀游戏,该案例源码已经在MetaGPTGitHub开源代码中可以看到。上次我们拆解了该游戏的整体实现框架(【AIAgent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(1)-整体框架解析),本文我们从运行流程的
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 深入解析部分可观测马尔可夫决策过程(POMDP)及其应用
码字的字节
算法人工智能马尔可夫决策过程POMDP
POMDP的基本概念与模型部分可观测马尔可夫决策过程(PartiallyObservableMarkovDecisionProcess,POMDP)是强化学习领域中处理不完全信息环境的核心数学模型。与完全可观测的马尔科夫决策过程(MDP)相比,POMDP更贴近现实世界中智能体面临的感知局限,其核心特征在于系统状态无法被直接观测,智能体必须通过间接的观测信号来推断潜在状态。POMDP的七元组模型PO
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源