- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- Prompt相关论文阅读(02)--Auto-CoT(2024-11-25)
zhilanguifang
论文promptengineering论文阅读笔记
论文阅读笔记2024-11-24~2024-11-25Auto-CoT:AutomaticChainofThoughtPromptinginLargeLanguageModels(ICLR2023)碎碎念:复现代码和笔记保存到gitee仓库上海交通大学的学生在亚马逊实习的时候的成果ICLR2023摘要:LLM能够通过生成中间推理步骤执行复杂的推理。提供这些步骤用于提示演示叫做思维链提示CoT。Co
- 【论文阅读笔记】《CodeS: Towards Building Open-source Language Models for Text-to-SQL 》
柠石榴
text2sql论文论文阅读笔记语言模型
文章目录一、论文基本信息1.文章标题2.所属刊物/会议3.发表年份4.作者列表5.发表单位二、摘要三、解决问题四、创新点五、自己的见解和感想六、研究背景七、研究方法模型实验数据评估指标八、总结九、相关重要文献一、论文基本信息1.文章标题CodeS:TowardsBuildingOpen-sourceLanguageModelsforText-to-SQL2.所属刊物/会议未明确标注(会议缩写为“C
- 【论文阅读笔记】HaDes幻觉检测benchmark
zsq
论文分享论文阅读笔记NLP大语言模型幻觉
0论文信息题目:AToken-levelReference-freeHallucinationDetectionBenchmarkforFree-formTextGeneration作者:TianyuLiu,YizheZhang,ChrisBrockett,YiMao,ZhifangSui,WeizhuChen,BillDolan会议:ACL,2022链接:https://arxiv.org/ab
- 论文阅读笔记—— Multi-attentional Deepfake Detection
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录Multi-attentionalDeepfakeDetection背景创新贡献方法注意图正则化的区域独立性损失注意力引导的数据增强实验Multi-attentionalDeepfakeDetection来源:CVPR2021作者:HanqingZhao1WenboZhou1,†DongdongChen2TianyiWei1WeimingZhang1,†NenghaiYu1单位:Unive
- [论文阅读笔记] Learning Transferable Visual Models From Natural Language Supervision
Heartache Doctor
笔记论文阅读笔记
Abstract将LLM带来的语言zero-shot能力扩展到图像领域,让图像pretrain不再局限于由数据集定义的类别,从而大幅度提升在downstream任务zero-shot的精度。文章提供了从零预训练的CLIP模型,用以训练的大数据集,以及基于对比学习的对齐方案。IntroductionNLP领域下,使用大量数据pretrain>使用高质量标注数据集。→\rightarrow→CV是否也
- GLIDE论文阅读笔记与DDPM(Diffusion model)的原理推导
大写-凌祁
论文阅读笔记人工智能深度学习python机器学习计算机视觉
Abstract扩散模型(Diffusionmodel)最近被证明可以生成高质量的合成图像,尤其是当它们与某种引导技术结合使用时,可以在生成结果的多样性与保真度之间进行权衡。本文探讨了在文本条件图像生成任务中使用扩散模型,并比较了两种不同的引导策略:CLIP引导和无分类器引导。我们发现,人类评估者更倾向于使用无分类器引导方法,无论是在照片真实感还是与文本描述的匹配度方面,该方法通常都能生成具有高度
- 论文阅读笔记——FLOW MATCHING FOR GENERATIVE MODELING
寻丶幽风
Background论文阅读笔记流匹配扩散模型人工智能
FlowMatching论文扩散模型:根据中心极限定理,对原始图像不断加高斯噪声,最终将原始信号破坏为近似的标准正态分布。这其中每一步都构造为条件高斯分布,形成离散的马尔科夫链。再通过逐步去噪得到原始图像。Flowmatching采取直接将已知分布(如白噪声)转换为真实数据分布来生成数据,并且Flow是基于NormalizingFlow,故而是可微双射。生成过程中变化的概率密度构成一个集合,称为概
- 论文阅读笔记——Step1X-Edit: A Practical Framework for General Image Editing
寻丶幽风
论文阅读笔记论文阅读笔记理解生成模型多模态人工智能
Step1X-Edit论文当前图像编辑数据集规模小,质量差,由此构建了如下数据构造管线。高质量三元组数据(源图像、编辑指令、目标图像)。主体添加与移除:使用Florence-2对专有数据集标注,然后使用SAM2进行分割,再使用ObjectRemovalAlpha进行修复。编辑指令结合Step-1o和GPT-4o生成,然后人工审查有效性。主体替换与背景更改:使用Florence-2对专有数据集标注,
- 论文阅读笔记——Nexus-Gen: A Unified Model for Image Understanding, Generation, and Editing
寻丶幽风
论文阅读笔记论文阅读笔记多模态理解生成自回归扩散模型
Nexus-Gen论文Nexus-Gen采用预测图像嵌入作为中间条件,链接自回归模型和扩散模型,通过预填充自回归避免嵌入误差传播,突破传统外界LLM因条件压缩导致信息丢失,提高理解生成模型在理解任务和生成任务上的性能表现。传统的图像生成任务往往局限于Text-to-Image场景,模型侧重于图像质量或局部内容填充。而Nexus-Gen的架构设计突破了这一范式,不仅具备高质量图像生成能力,还可以执行
- 论文阅读笔记——PixArt-α,PixArt-δ
寻丶幽风
论文阅读笔记论文阅读笔记T2I扩散模型文生图
PixArt-αPixArt-α论文仅使用28400美元,28M训练数据,训练时长为SD1.5的10.8%,只有0.6B参数量,达到接近商业应用的水准。现有数据集存在的缺陷:图文匹配偏差、描述信息不完整、词汇多样性不足(长尾效应显著)、低质量数据。为了实现低成本训练,华为采用了三阶段的训练策略:第一个阶段是学习像素依赖关系,简单来说是先学习生成真实的图像,这里是用ImageNet数据集训练一个基于
- 《XMK-CKKS: Extended Multiple Key Homomorphic Encryption over CKKS》 论文阅读笔记
stupidyccc
同态加密论文阅读笔记安全
《XMK-CKKS:ExtendedMultipleKeyHomomorphicEncryptionoverCKKS》中科院2区总结提出了xMK-CKKS,一种多密钥同态方案。客户端使用聚合公钥加密梯度,解密的时候需要所有客户端提供解密份额,协助服务器解密总和。基于FadAvg和XMK-CKKS提出一个ppfl模型。在半诚实模型下可以防止n-1个客户端和服务器的勾结。xMK-CKKS###setu
- Adversarial examples based on object detection tasks: A survey》论文阅读笔记
2301_80355452
目标检测论文阅读笔记
这是一篇关于目标检测任务中对抗样本攻击的综述论文。文章介绍了深度学习在计算机中的应用,以及对抗样本攻击的相关概念和方法,其中重点讨论了目标检测任务中基于分类和回归的对抗样本攻击,并对其他相关攻击方法进行了总结,最后得出结论并展望未来研究方向。1.引言深度学习背景:深度学习在处理图像或视频数据方面具有优势,广泛应用于计算机视觉任务,但由于深度网络的复杂结构,其存在脆弱性,容易受到攻击。目标检测任务:
- 论文阅读笔记—— AdvFilter: Predictive Perturbation-aware Filtering against Adversarial Attack via Multi-d L
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录AdvFilter:PredictivePerturbation-awareFilteringagainstAdversarialAttackviaMulti-domainLearning背景贡献相关工作对抗性去噪防御对抗性训练防御其他对抗性防御方法一般图像去噪创新公式方法多域学习实验AdvFilter:PredictivePerturbation-awareFilteringagains
- 【论文阅读笔记】Attention Is All You Need
时光机゚
论文阅读笔记
论文小结 这是17年的老论文了,Transformer的出处,刚发布时的应用场景是文字翻译。BLUE是机器翻译任务中常用的一个衡量标准。 在此论文之前,序列翻译的主导模型是RNN或者使用编解码器结构的CNN。本文提出的Transformer结构不需要使用循环和卷积结构,是完全基于注意力机制的模型。Transformer在序列转换上具有高并行度,在两个机器翻译的任务上都得到了卓越的成果,且其训练
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- GS-SLAM论文阅读笔记-MGSO
zenpluck
GS论文阅读论文阅读笔记
前言MGSO首字母缩略词是直接稀疏里程计(DSO),我们建立的光度SLAM系统和高斯飞溅(GS)的混合。这应该是第一个前端用DSO的高斯SLAM,不知道这个系统的组合能不能打得过ORB-SLAM3,以及对DSO会做出怎么样的改进以适应高斯地图,接下来就看一下吧!GishelloG^s_ihelloGishello我是红色文章目录前言1.背景介绍2.关键内容2.1SLAMmodule2.2Dense
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- 大模型隐空间推理论文阅读笔记
猴猴猪猪
AIGCpython实验记录人工智能深度学习
文章目录TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介1.1摘要1.2引言TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介机构:Meta代码:任务:特点:方法:1.1摘要现状:大语言模型往往局限在“languagespace"进行推理,在解决
- 【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总_大模型在代码缺陷检测领域的应用实践(1)
2401_84972910
程序员AIGC论文阅读笔记
欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程序修复、生成测试等多个应用方向,深刻展示了这些技术如何在网络安全领域中起到革命性作用。同时,本系列还细致地介绍了大模型技术的基础架构、增强策略、关键数据
- 论文阅读笔记——Prediction with Action: Visual Policy Learning via Joint Denoising Process
寻丶幽风
论文阅读笔记论文阅读笔记人工智能
以前的method是输入视频输出视频或者输入视频和action学习action,该方法认为action,video和othercondition具有一定联系,所以一次性对所有的进行jointdenoise。网络结构采用MaskedMulti-headAttention关联不同模态,使用DiT的backbone。
- 深度学习重要论文阅读笔记 ResNet (2025.2.26)
北岛寒沫
逐界星辰2025计算机科研深度学习论文阅读笔记
文章目录问题背景数据预处理神经网络模型模型性能知识点积累英语单词积累问题背景随着神经网络变得更深(层数变多),模型的训练过程也会变得更加困难。当神经网络的深度增加,就会出现梯度消失和梯度下降现象,妨碍模型的收敛。不过,这种情况可以通过归一化的模型初始化和中间的归一化层基本解决。但是,尽管在增加了归一化技术的情况下很深的神经网络可以收敛,又出现了另外一个问题,即随着模型深度的增加,模型的准确率反而下
- 论文阅读笔记1——DARTS:Differentiable Architecture Search可微分架构搜索(一)(论文翻译学习)
fuhao7i
论文阅读笔记深度学习人工智能机器学习算法计算机视觉
DARTS:DifferentiableArchitectureSearch可微分架构搜索(一)DARTS:DifferentiableArchitectureSearch(一)ABSTRACT摘要1.INTRODUCTION介绍2.可微的结构搜索加油加油!如果你感觉你现在很累,那么恭喜你,你现在正在走上坡路!让我们一起加油!欢迎关注我的讲解视频,让我们一起学习:Bilibili主页:https:
- 【CCM-SLAM论文阅读笔记】
随机取名字
协同SLAM论文阅读slam
CCM-SLAM论文阅读笔记整体框架结构如图所示:单智能体只负责采集图像数据,运行实时视觉里程计VO以估计当前位姿和环境地图,由于单智能体计算资源有限,负责生成的局部地图只包含当前N个最近的关键帧。服务器负责地图管理、地点识别、地图融合和全局BA优化。所有局部地图使用本地里程计框架,地图信息在从一个本地里程计到另一个本地里程计框架的相对坐标中进行交换。CCM-SLAM不假设任何关于智能体初始位置的
- 【论文阅读笔记|EMNLP2023】DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Ext
Rose sait
论文阅读笔记
论文题目:DemoSG:Demonstration-enhancedSchema-guidedGenerationforLow-resourceEventExtraction论文来源:EMNLP2023论文链接:2023.findings-emnlp.121.pdf(aclanthology.org)代码链接:https://github.com/GangZhao98/DemoSG0摘要当前大多数
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc