python中的reshape中参数-1的作用

来源链接:https://www.zhihu.com/question/52684594/answer/157491724


 

numpy.reshape(a, newshape, order='C')[source],参数`newshape`是啥意思?

根据Numpy文档(https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy-reshape)的解释:

newshape : int or tuple of ints
The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, **the value is inferred from the length of the array and remaining dimensions**.

大意是说,数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。

举几个例子或许就清楚了,有一个数组z,它的shape属性是(4, 4)


 
   
   
   
   
  1. z = np.array([[ 1, 2, 3, 4],
  2. [ 5, 6, 7, 8],
  3. [ 9, 10, 11, 12],
  4. [ 13, 14, 15, 16]])
  5. z.shape
  6. ( 4, 4)
z.reshape(-1)

 
   
   
   
   
  1. z .reshape( -1)
  2. array( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
z.reshape(-1, 1)

也就是说,先前我们不知道z的shape属性是多少,但是想让z变成只有一列,行数不知道多少,通过`z.reshape(-1,1)`,Numpy自动计算出有12行,新的数组shape属性为(16, 1),与原来的(4, 4)配套。


 
   
   
   
   
  1. z .reshape( -1,1)
  2. array( [[ 1],
  3. [ 2],
  4. [ 3],
  5. [ 4],
  6. [ 5],
  7. [ 6],
  8. [ 7],
  9. [ 8],
  10. [ 9],
  11. [10],
  12. [11],
  13. [12],
  14. [13],
  15. [14],
  16. [15],
  17. [16]])
z.reshape(-1, 2)

newshape等于-1,列数等于2,行数未知,reshape后的shape等于(8, 2)


 
   
   
   
   
  1. z .reshape( -1, 2)
  2. array( [[ 1, 2],
  3. [ 3, 4],
  4. [ 5, 6],
  5. [ 7, 8],
  6. [ 9, 10],
  7. [11, 12],
  8. [13, 14],
  9. [15, 16]])

同理,只给定行数,newshape等于-1,Numpy也可以自动计算出新数组的列数。

----------

参考

1.http://stackoverflow.com/questions/18691084/what-does-1-mean-in-numpy-reshape

你可能感兴趣的:(深度学习及Python相关知识)