操作系统与计算机网络

操作系统与计算机网络

  • 操作系统
    • 进程与线程
      • 区别与联系
      • 线程调度
      • 线程切换步骤
      • Linux下的IPC(通信)【中间件开发了解原理】
        • Pipe
        • MessageQueue
        • 共享内存
        • UnixSocket
        • Signal
        • Semaphore
      • 协程
    • linux常用命令
      • awk
      • top
      • netstat
      • grep
      • less
      • tail
    • 死锁
    • 内存分页管理与Swap
    • 任务队列与CPU Load
    • 拓展知识点
  • 网络知识
    • 4/7层网络模型
    • TCP协议
      • 建立链接三次握手
      • 关闭链接四次挥手
      • 报文状态标识与链接状态
      • Nagel算法与ACK延迟
      • Keepalive
      • 滑动窗口与流量控制
    • UDP
    • HTTP
      • 协议
      • 状态码
      • HTTPS
      • HTTP2
    • QUIC

操作系统

进程与线程

区别与联系

进程:系统资源分配的最小单位,使用独立的数据空间
线程:程序执行的最小单位,共享进程的数据空间

线程调度

调度算法

  1. 时间片轮转调度算法(RR):给每个进程固定的执行时间,根据进程到达的先后顺序让进程在单位时间片内执行,执行完成后便调度下一个进程执行,时间片轮转调度不考虑进程等待时间和执行时间,属于抢占式调度。优点是兼顾长短作业;缺点是平均等待时间较长,上下文切换较费时。适用于分时系统。
  2. 先来先服务调度算法(FCFS):根据进程到达的先后顺序执行进程,不考虑等待时间和执行时间,会产生饥饿现象。属于非抢占式调度,优点是公平,实现简单;缺点是不利于短作业。
  3. 优先级调度算法(HPF):在进程等待队列中选择优先级最高的来执行。
  4. 多级反馈队列调度算法:将时间片轮转与优先级调度相结合,把进程按优先级分成不同的队列,先按优先级调度,优先级相同的,按时间片轮转。优点是兼顾长短作业,有较好的响应时间,可行性强,适用于各种作业环境。
  5. 高响应比优先调度算法:根据“响应比=(进程执行时间+进程等待时间)/ 进程执行时间”这个公式得到的响应比来进行调度。高响应比优先算法在等待时间相同的情况下,作业执行的时间越短,响应比越高,满足段任务优先,同时响应比会随着等待时间增加而变大,优先级会提高,能够避免饥饿现象。优点是兼顾长短作业,缺点是计算响应比开销大,适用于批处理系统。

线程切换步骤

线程切换:即使是单核CPU也支持多线程执行代码,CPU通过给每个线程分配CPU时间片来实现这个机制。时间片是CPU分配给各个线程的时间,因为时间片非常短,所以CPU通过不停地切换线程执行,让我们感觉多个线程时同时执行的,时间片一般是几十毫秒(ms)。CPU通过时间片分配算法来循环执行任务,当前任务执行一个时间片后会切换到下一个任务。但是,在切换前会保存上一个任务的状态,以便下次切换回这个任务时,可以再次加载这个任务的状态,从任务保存到再加载的过程就是一次上下文切换。

由上可知,线程在进行上下文切换时,会有额外的开销,如何减少上下文切换?
既然上下文切换会导致额外的开销,因此减少上下文切换次数便可以提高多线程程序的运行效率。减少上下文切换的方法有无锁并发编程、CAS算法、使用最少线程和使用协程。

  1. 无锁并发编程。多线程竞争时,会引起上下文切换,所以多线程处理数据时,可以用一些办法来避免使用锁,如将数据的ID按照Hash取模分段,不同的线程处理不同段的数据
  2. CAS算法。Java的Atomic包使用CAS算法来更新数据,而不需要加锁
  3. 使用最少线程。避免创建不需要的线程,比如任务很少,但是创建了很多线程来处理,这样会造成大量线程都处于等待状态
  4. 协程。在单线程里实现多任务的调度,并在单线程里维持多个任务间的切换

Linux下的IPC(通信)【中间件开发了解原理】

Pipe

MessageQueue

共享内存

UnixSocket

Signal

Semaphore

协程

协程是一种用户态的轻量级线程,协程的调度完全由用户控制。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。

第三方框架:kilim等

linux常用命令

awk

awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
 [-F|-f|-v]   大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=value
'  '          引用代码块
BEGIN   初始化代码块,在对每一行进行处理之前,初始化代码,主要是引用全局变量,设置FS分隔符
//           匹配代码块,可以是字符串或正则表达式
{}           命令代码块,包含一条或多条命令
;          多条命令使用分号分隔
END      结尾代码块,在对每一行进行处理之后再执行的代码块,主要是进行最终计算或输出结尾摘要信息
 
特殊要点:
$0           表示整个当前行
$1           每行第一个字段
NF          字段数量变量
NR          每行的记录号,多文件记录递增
FNR        与NR类似,不过多文件记录不递增,每个文件都从1开始
\t            制表符
\n           换行符
FS          BEGIN时定义分隔符
RS       输入的记录分隔符, 默认为换行符(即文本是按一行一行输入)
~            匹配,与==相比不是精确比较
!~           不匹配,不精确比较
==         等于,必须全部相等,精确比较
!=           不等于,精确比较
&&      逻辑与
||             逻辑或
+            匹配时表示1个或1个以上
/[0-9][0-9]+/   两个或两个以上数字
/[0-9][0-9]*/    一个或一个以上数字
FILENAME 文件名
OFS      输出字段分隔符, 默认也是空格,可以改为制表符等
ORS        输出的记录分隔符,默认为换行符,即处理结果也是一行一行输出到屏幕
-F'[:#/]'   定义三个分隔符
 
print & $0
print 是awk打印指定内容的主要命令

top

top 命令实时显示进程的状态。默认状态显示的是cpu密集型的进程,并且每5秒钟更新一次。你可以通过PID的数字大小,age (newest first), time (cumulative time),resident memory usage(常驻内存使用)以及进程从启动后占用cpu的时间。
top详解

netstat

netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。

语法选项
netstat [选项]

-a或–all:显示所有连线中的Socket;
-A<网络类型>或–<网络类型>:列出该网络类型连线中的相关地址;
-c或–continuous:持续列出网络状态;
-C或–cache:显示路由器配置的快取信息;
-e或–extend:显示网络其他相关信息;
-F或–fib:显示FIB;
-g或–groups:显示多重广播功能群组组员名单;
-h或–help:在线帮助;
-i或–interfaces:显示网络界面信息表单;
-l或–listening:显示监控中的服务器的Socket;
-M或–masquerade:显示伪装的网络连线;
-n或–numeric:直接使用ip地址,而不通过域名服务器;
-N或–netlink或–symbolic:显示网络硬件外围设备的符号连接名称;
-o或–timers:显示计时器;
-p或–programs:显示正在使用Socket的程序识别码和程序名称;
-r或–route:显示Routing Table;
-s或–statistice:显示网络工作信息统计表;
-t或–tcp:显示TCP传输协议的连线状况;
-u或–udp:显示UDP传输协议的连线状况;
-v或–verbose:显示指令执行过程;
-V或–version:显示版本信息;
-w或–raw:显示RAW传输协议的连线状况;
-x或–unix:此参数的效果和指定"-A unix"参数相同;
–ip或–inet:此参数的效果和指定"-A inet"参数相同。

grep

grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。
2.格式

grep [options]

3.主要参数

[options]主要参数:
-c:只输出匹配行的计数。
-I:不区分大 小写(只适用于单字符)。
-h:查询多文件时不显示文件名。
-l:查询多文件时只输出包含匹配字符的文件名。
-n:显示匹配行及 行号。
-s:不显示不存在或无匹配文本的错误信息。
-v:显示不包含匹配文本的所有行。
pattern正则表达式主要参数:
\: 忽略正则表达式中特殊字符的原有含义。
^:匹配正则表达式的开始行。
$: 匹配正则表达式的结束行。
<:从匹配正则表达 式的行开始。
>:到匹配正则表达式的行结束。
[ ]:单个字符,如[A]即A符合要求 。
[ - ]:范围,如[A-Z],即A、B、C一直到Z都符合要求 。
。:所有的单个字符。 * :有字符,长度可以为0。

less

less 工具也是对文件或其它输出进行分页显示的工具,应该说是linux正统查看文件内容的工具,功能极其强大。less 的用法比起 more 更加的有弹性。 在 more 的时候,我们并没有办法向前面翻, 只能往后面看,但若使用了 less 时,就可以使用 [pageup] [pagedown] 等按 键的功能来往前往后翻看文件,更容易用来查看一个文件的内容!除此之外,在 less 里头可以拥有更多的搜索功能,不止可以向下搜,也可以向上搜。

  1. 命令格式:

less [参数] 文件

  1. 命令功能:

less 与 more 类似,但使用 less 可以随意浏览文件,而 more 仅能向前移动,却不能向后移动,而且 less 在查看之前不会加载整个文件。

  1. 命令参数:

-b <缓冲区大小> 设置缓冲区的大小
-e 当文件显示结束后,自动离开
-f 强迫打开特殊文件,例如外围设备代号、目录和二进制文件
-g 只标志最后搜索的关键词
-i 忽略搜索时的大小写
-m 显示类似more命令的百分比
-N 显示每行的行号
-o <文件名> 将less 输出的内容在指定文件中保存起来
-Q 不使用警告音
-s 显示连续空行为一行
-S 行过长时间将超出部分舍弃
-x <数字> 将“tab”键显示为规定的数字空格
/字符串:向下搜索“字符串”的功能
?字符串:向上搜索“字符串”的功能
n:重复前一个搜索(与 / 或 ? 有关)
N:反向重复前一个搜索(与 / 或 ? 有关)
b 向后翻一页
d 向后翻半页
h 显示帮助界面
Q 退出less 命令
u 向前滚动半页
y 向前滚动一行
空格键 滚动一行
回车键 滚动一页
[pagedown]: 向下翻动一页
[pageup]: 向上翻动一页

tail

linux tail命令用途是依照要求将指定的文件的最后部分输出到标准设备,通常是终端,通俗讲来,就是把某个档案文件的最后几行显示到终端上,假设该档案有更新,tail会自己主动刷新,确保你看到最新的档案内容。

  1. tail命令语法

tail [ -f ] [ -c Number | -n Number | -m Number | -b Number | -k Number ] [ File ]

  1. 参数解释:

-f 该参数用于监视File文件增长。
-c Number 从 Number 字节位置读取指定文件
-n Number 从 Number 行位置读取指定文件。
-m Number 从 Number 多字节字符位置读取指定文件,比方你的文件假设包括中文字,假设指定-c参数,可能导致截断,但使用-m则会避免该问题。
-b Number 从 Number 表示的512字节块位置读取指定文件。
-k Number 从 Number 表示的1KB块位置读取指定文件。
File 指定操作的目标文件名称
上述命令中,都涉及到number,假设不指定,默认显示10行。Number前面可使用正负号,表示该偏移从顶部还是从尾部開始计算。
tail可运行文件一般在/usr/bin/以下。

死锁

死锁是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。

内存分页管理与Swap

任务队列与CPU Load

拓展知识点

  • 内存屏障
  • 指令乱序
  • 分支预测
  • CPU亲和性
  • Netfilter和iptables

网络知识

4/7层网络模型

操作系统与计算机网络_第1张图片
OSI模型的七层分别进行以下的操作:

第一层:物理层
       负责最后将信息编码成电流脉冲或其它信号用于网上传输。它由计算机和网络介质之间的实际界面组成,可定义电气信号、符号、线的状态和时钟要求、数据编码和数据传输用的连接器。

第二层:数据链路层
       通过物理网络链路提供可靠的数据传输。

第三层:网络层
        负责在源和终点之间建立连接。它一般包括网络寻径,还可能包括流量控制、错误检查等。相同MAC标准的不同网段之间的数据传输一般只涉及到数据链路层,而不同的MAC标准之间的数据传输都涉及到网络层。例如IP路由器工作在网络层,因而可以实现多种网络间的互联。

第四层:传输层
      向高层提供可靠的端到端的网络数据流服务。传输层的功能一般包括流控、多路传输、虚电路管理及差错校验和恢复。

第五层:会话层
        建立、管理和终止表示层与实体之间的通信会话。通信会话包括发生在不同网络应用层之间的服务请求和服务应答,这些请求与应答通过会话层的协议实现。它还包括创建检查点,使通信发生中断的时候可以返回到以前的一个状态。

第六层:表示层
      提供多种功能用于应用层数据编码和转化,以确保以一个系统应用层发送的信息可以被另一个系统应用层识别。表示层的编码和转化模式包括公用数据表示格式、性能转化表示格式、公用数据压缩模式和公用数据加密模式。
      公用数据表示格式就是标准的图像、声音和视频格式。
      表示层协议一般不与特殊的协议栈关联,如QuickTime是Applet计算机的视频和音频的标准,MPEG是ISO的视频压缩与编码标准。常见的图形图像格式PCX、GIF、JPEG是不同的静态图像压缩和编码标准。

第七层:应用层
      最接近终端用户的OSI层,这就意味着OSI应用层与用户之间是通过应用软件直接相互作用的。注意,应用层并非由计算机上运行的实际应用软件组成,而是由向应用程序提供访问网络资源的API(Application Program Interface,应用程序接口)组成,这类应用软件程序超出了OSI模型的范畴。

TCP/IP4层模型

 第一层:网络接口层
  包括用于协作IP数据在已有网络介质上传输的协议。实际上TCP/IP标准并不定义与ISO数据链路层和物理层相对应的功能。相反,它定义像地址解析协议(Address Resolution Protocol,ARP)这样的协议,提供TCP/IP协议的数据结构和实际物理硬件之间的接口。

第二层:网间层
  对应于OSI七层参考模型的网络层。本层包含IP协议、RIP协议(Routing Information Protocol,路由信息协议),负责数据的包装、寻址和路由。同时还包含网间控制报文协议(Internet Control Message Protocol,ICMP)用来提供网络诊断信息。
  
第三层:传输层
  对应于OSI七层参考模型的传输层,它提供两种端到端的通信服务。其中TCP协议(Transmission Control Protocol)提供可靠的数据流运输服务,UDP协议(Use Datagram Protocol)提供不可靠的用户数据报服务。
  
第四层:应用层
  对应于OSI七层参考模型的应用层和表达层。因特网的应用层协议包括Finger、Whois、FTP(文件传输协议)、Gopher、HTTP(超文本传输协议)、Telent(远程终端协议)、SMTP(简单邮件传送协议)、IRC(因特网中继会话)、NNTP(网络新闻传输协议)等。

TCP协议

特点:

  1. 基于链接(点对点)
  2. 双工通信
  3. 可靠传输
  4. 拥塞控制
  5. 基于字节流而非报文

TCP实现细节

  1. 8种报文状态
  2. 滑动窗口机智
  3. keepAlive
  4. Nagel算法

建立链接三次握手

操作系统与计算机网络_第2张图片
三次握手,是为了建立双向的链接
SYN洪水攻击的原因:server端收到client端的SYN请求后,发送ACD和SYN但是client端不进行回复,导致server端大量的链接在SYN_RCVD状态,进而影响其它正常请求,可以通过设置linux的tcp参数,syn_ack_retrys的次数,加快半连接的失效速度.

关闭链接四次挥手

操作系统与计算机网络_第3张图片
2MSL:最大报文段生存时间

为什么要等待2MSL,是为了保证链接的可靠关闭,保证链接中重复的数据段从网络中消失,防止端口重用的时候可能会产生数据混淆。
大量socket处在time_wait或者close_wait状态的问题:一般开启linux的tcp参数:tw_reuse和tw_recyle,能加快回收。

报文状态标识与链接状态

Nagel算法与ACK延迟

Keepalive

滑动窗口与流量控制

UDP

  1. 非链接
  2. 非可靠传输
  3. 效率高

HTTP

协议

  • Method
  • Header
  • Cookies
  • UrlEncode

状态码

HTTPS

HTTP2

  1. 多路复用
  2. Stream
  3. 流量控制
  4. 服务端推送
  5. 头部压缩

QUIC

  1. 避免前序包阻塞(HOL阻塞)
  2. 零RTT链接
  3. FEC向前纠错

你可能感兴趣的:(操作系统与计算机网络,操作系统与计算机网络)