- 神奇的平静
漫步的小马驹
我们七组色香味俱全的特色菜百家宴我们七组的仙女们仙女们在舞动上图是今晚上海nlp课堂的晚会照片。熟悉的场地,熟悉的伙伴们。只是,我从画面里,跑到了画面外。决定不去二阶的时候,我以为在这样的时刻,我会有很多情绪:郁闷、遗憾、羡慕、纠结……没想到,这一刻真的来临的时候,我心里是满满的喜悦、平静。其实,在读到惠安的时,我内心有些小波动:惠安和我工作类似,她也面临突击检查,她因为领导的理解、同事的护援而得
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 【AI大模型:前沿】43、Mamba架构深度解析:为什么它是Transformer最强挑战者?
无心水
架构transformerMambaMamba架构AI大模型系统开发实战AI大模型高手开发AI大模型系统实战
Transformer架构自2017年诞生以来,一直是NLP、计算机视觉等领域的“统治级”模型架构。但随着序列长度需求的增长(如128K长文本处理、基因组学超长序列分析),其自注意力机制的O(n2)O(n^2)O(n2)计算复杂度成为难以逾越的瓶颈。2023年底,由AlbertGu和TriDao等人提出的Mamba架构,通过创新的“选择性状态空间模型(SelectiveSSM)”实现了线性复杂度(
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
java1234_小锋
NLPNLLP微博舆情分析python自然语言处理flask
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博文章数据可视化分析-文章分类下拉框实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更
- Rouge:面向摘要自动评估的召回导向型指标——原理、演进与应用全景
大千AI助手
深度学习人工智能神经网络Rouge文本摘要Summary评估
“以n-gram重叠量化文本生成质量,为摘要评估提供可计算标尺”Rouge(Recall-OrientedUnderstudyforGistingEvaluation)是由南加州大学信息科学研究所(ISI)的Chin-YewLin于2004年提出的自动文本摘要评估指标,其核心思想是通过计算生成文本与参考摘要之间的n-gram重叠率,量化摘要的内容覆盖度与忠实度。作为自然语言处理(NLP)领域最权威
- 甘超波:NLP权谋中谈判流程
甘超波
哈喽,大家好我是甘超波,是一名NLP爱好者,每天一篇原创文章或视频,分享我的实战经验和案例,希望给你些启发和帮助今天主要分享权谋中的谈判流程一:什么是谈判?有的伙伴认为:谈判就是勾心斗角有的伙伴认为:只有商业和国家用到谈判还有的伙伴认为:谈判是一种很高大上的方法和技巧这是不同的伙伴对谈判的看法,这些都是不全面的到底什么是谈判?谈判:处理事情设计出一系列巧妙的方法、技巧、流程,让对方配合你、支持你的
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- AI办公(综合)课程内容框架
建模中…
AI-native
AI办公(综合)课程内容框架:深度挖掘与分析一、课程定位深化:从“技能学习”到“价值创造体系构建”传统办公课程聚焦单点工具,本课程定位突破技能培训边界,构建“技术-场景-价值”闭环:-技术穿透性:不局限于AI工具表层操作,深入讲解自然语言处理(NLP)、生成式对抗网络(GANs)等技术在办公场景的底层逻辑,让学员理解“AI为何能优化流程”,而非仅知“如何用工具”。-场景延展性:覆盖内容运营、协作管
- 自然语言处理技术应用领域深度解析:从理论到实践的全面探索
1.引言:自然语言处理的技术革命与应用前景自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能领域的核心分支,正在以前所未有的速度改变着我们的数字化生活。从最初的规则基础系统到如今基于深度学习的大语言模型,NLP技术经历了从理论探索到实际应用的深刻变革。在当今信息爆炸的时代,人类每天产生的文本数据量达到了惊人的规模,如何让计算机理解、处理和生成人类语言,已经成为推
- 大语言模型原理与工程实践:RLHF 实战框架
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:RLHF实战框架1.背景介绍1.1人工智能的崛起人工智能(AI)技术在过去几年中取得了令人瞩目的进展,尤其是在自然语言处理(NLP)和计算机视觉(CV)等领域。大型语言模型(LLM)的出现,使得人工智能系统能够生成逼真的自然语言输出,从而在多个应用场景中发挥重要作用。1.2大语言模型的挑战然而,训练出高质量的大语言模型并非易事。传统的监督学习方法需要大量高质量的标注数据,
- 主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
金井PRATHAMA
脑神经科学与NLP自然语言处理人工智能神经网络
时空联合细胞(SpatiotemporalConjunctiveCells)主要分布在背侧海马体CA1区(dCA1),其核心功能是同步编码空间位置、时间信息和行为意图,形成动态的情景记忆表征。这种神经机制为自然语言处理(NLP)中的深层语义分析提供了突破性的启示,尤其在解决语义连贯性、上下文建模和长期依赖等核心挑战上。以下是具体影响和技术实现路径:一、时空联合细胞的核心机制及其NLP关联背侧海马体
- Transformer:颠覆NLP的自注意力革命
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer自然语言处理深度学习
Transformer:颠覆NLP的自注意力革命Transformer是自然语言处理领域中极具影响力的深度学习模型架构,以下是对其的详细介绍:提出背景与应用:2017年,Vaswani等人在《AttentionIsAllYouNeed》论文中首次提出Transformer架构,它主要用于处理序列到序列的任务,如机器翻译、文本生成等。核心原理:文本生成的Transformer模型原理是“预测下一个词
- Swin Transformer原理与代码精讲
bai666ai
深度学习之计算机视觉transformerswinCV深度学习图像分类
课程链接:SwinTransformer原理与代码精讲--计算机视觉视频教程-人工智能-CSDN程序员研修院Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。SwinTransformer是在ViT基础上发展而来,是Transformer应用于CV(计算机视觉)领域又一里程碑式的工作。它可以作为通用的骨干网络,用于图片分类的CV任务,以及下游的CV任务,如目标检测、实例分
- 深入探讨 Transformer 模型架构
年纪轻轻头已凉
transformer深度学习人工智能
```html深入探讨Transformer模型架构深入探讨Transformer模型架构Transformer是一种革命性的神经网络架构,由Vaswani等人在2017年提出,并在自然语言处理(NLP)领域取得了显著的成功。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖于自注意力机制(Self-AttentionMechanism),这使得它在处理长序
- 星图云开发者平台新功能速递|AI大模型赋能开发应用效率提升三倍!
星图易码
人工智能
还在为技术文档检索耗费数小时?还在重复编写基础CRUD代码?星图云开发者平台发布「三大AI核心能力」,将自然语言大模型深度融入开发全流程。这不是替代开发者,而是让每位工程师拥有超级辅助——从此复杂算法封装、接口调试、业务逻辑设计效率全面跃升。一、智能化多源知识问答技术当开发者以自然语言形式提出技术问题时,多模态自然语言处理(NLP)模型与知识图谱融合技术,实现三重突破:1.跨域知识检索:联动平台专
- 基于自然语言处理的财报分析:量化价值投资新视角
AI量化价值投资入门到精通
自然语言处理easyui人工智能ai
基于自然语言处理的财报分析:量化价值投资新视角关键词:自然语言处理;财报分析;量化价值投资;文本挖掘;金融科技摘要:本研究聚焦于基于自然语言处理(NLP)的财报分析,为量化价值投资开辟了新的视角。首先介绍了该领域的背景与历史发展,明确了问题空间和关键术语。接着从第一性原理推导构建理论框架,分析其局限性与竞争范式。阐述了系统架构设计、实现机制,涵盖算法复杂度、代码实现等。探讨了在实际应用中的策略、集
- 奥威BI+AI:绘就企业决策智能的新诗篇
一、技术交响:BI与AI的浪漫邂逅在技术的浩瀚宇宙中,奥威BI+AI正引领一场前所未有的智慧风暴。这是一场技术革命,巧妙地将商业智能(BI)与人工智能(AI)深度融合,编织出独一无二的“双引擎”分析平台梦想。智能数据治理、预测建模与自然语言交互,三大核心功能如璀璨星辰,照亮企业前行的道路。·智能数据治理:通过NLP技术,非结构化数据得以自动清洗,ETL效率飙升300%,数据治理从未如此
- PyTorch中的词嵌入层(nn.Embedding)详解与实践指南
慕婉0307
自然语言处理pytorchembedding人工智能
一、词嵌入(WordEmbedding)简介词嵌入是自然语言处理(NLP)中的一项核心技术,它将离散的词语映射到连续的向量空间中。通过词嵌入,语义相似的词语在向量空间中的位置也会相近。为什么需要词嵌入?解决维度灾难:传统one-hot编码维度等于词汇表大小,而词嵌入维度可自定义捕捉语义关系:通过向量空间中的距离反映词语间的语义关系迁移学习:预训练的词嵌入可以在不同任务间共享二、PyTorch中的n
- 甘超波:NLP权谋的谋略思维
甘超波
哈喽,大家好我是甘超波,是一名NLP爱好者,每天一篇原创文章或视频,分享我的实战经验和案例,希望给你些启发和帮助今天我们主要来分享一下NLP中权谋的谋略思维对于权谋这个词,相信很多人都不陌生,有一部分伙伴可能在电视上看一些后宫剧,对权谋有所认识、有一部分伙伴可能在看过相关权谋书籍,对权谋有所了解有一部分伙伴可能在自媒体看过权谋文章,对权谋有了解这是不同的伙伴对权谋的认知,那我们今天就来看一下NLP
- 基础NLP | 01 机器学习 深度学习基础介绍
是娜个二叉树!
NLP自然语言处理机器学习深度学习
文章目录机器学习简介有监督学习无监督学习一般流程常用概念深度学习简介隐含层/中间层例子and流程如果想要猜测的又快又准,调整的方向有哪些?随机初始化损失函数导数与梯度梯度下降优化器MiniBatchepoch流程深度学习的基本思想机器学习简介有监督学习核心目标:建立一个模型(函数),来描述输入(X)和输出(Y)之间的映射关系价值:对于新的输入,通过模型给出预测的输出要点:有一定数量的训练样本输入和
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 主页-评论用户时间占比环形饼状图实现
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解主页-评论用户时间占比环形饼状图实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更新中.
- NLP--自然语言处理学习-day1
啊波阿波波
自然语言处理学习easyui
一.初步认识NLP自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学和人工智能(AI)的一个交叉领域,旨在使计算机能够理解、分析、生成和处理人类语言的能力。它结合了计算语言学、人工智能、机器学习和语言学等多个领域的知识。NLP的主要任务文本分类:将文本内容分配到一个或多个类别中,例如垃圾邮件分类、情感分析等。命名实体识别(NER):从文本中识别出特定类型的实体,
- Python 解析 RAG(检索增强生成)的核心概念
产品挨打师
python开发语言
```htmlPython解析RAG(检索增强生成)的核心概念Python解析RAG(检索增强生成)的核心概念RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合了检索和生成能力的模型架构,广泛应用于自然语言处理(NLP)领域。RAG模型通过从外部知识库中检索相关信息,并将其与生成模型相结合,从而实现更高质量的文本生成任务。本文将介绍RAG的核心概念及其在P
- 主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时间细胞对NLP中的深层语义分析的积极影响和启示
金井PRATHAMA
脑神经科学与NLP神经网络自然语言处理人工智能知识图谱
时间细胞(timecells)作为海马体CA1区域中编码时间信息的神经元,其工作机制对自然语言处理(NLP)中的深层语义分析具有多方面的启示。这些神经元通过整合时空信息、动态竞争机制和序列编码能力,为解决NLP中语义连贯性、上下文依赖性和长期依赖等挑战提供了生物神经基础。以下是具体的影响和启示:一、时间细胞的特性与深层语义分析的挑战关联时间编码的动态性与语义上下文依赖时间细胞通过速率编码(firi
- 【2025版】最新大模型就业方向,零基础入门到精通,收藏这篇就够了
程序员_大白
大模型程序员职业与发展大模型人工智能
大模型就业方向主要集中在以下几个核心领域:数据治理方向:涉及爬虫、数据清洗、ETL、DataEngine、Pipeline等工作,确保数据质量和可用性,支持模型训练和运行。平台搭建方向:负责分布式训练、大模型集群以及工程基建,构建高效的模型运行平台,支持高性能计算。模型算法方向:专注于开发新的预训练模型和优化算法,提升模型的准确性和效率,适用于NLP、语音助手、对话机器人等领域。部署落地方向:包括
- AI产品经理面试宝典第48天:产品设计与用户体验优化策略
TGITCIC
AI产品经理一线大厂面试题产品经理AI产品经理面试大模型产品经理面试大模型面试AI面试AI产品
1.用户体验分析与产品设计逻辑1.1问:如何通过用户反馈优化AI产品体验?答:建立反馈闭环机制:通过应用内评分、用户访谈、行为埋点三维度收集数据,例如某语音助手产品通过NLP分析用户纠错语句,发现"误唤醒"问题占比37%;优先级排序模型:采用Kano模型量化需求,将"语音响应延迟降低至200ms内"列为基本型需求,"方言识别"设为期望型需求;敏捷迭代验证:针对某智能客服产品,采用灰度发布策略,先在
- LoRA中的低秩矩阵估计
LoRA(Low-RankAdaptation)是一种用于微调大型语言模型(LLM)的高效方法,尤其在资源有限的环境下表现出色。其核心思想是通过低秩矩阵来近似微调过程中权重矩阵的变化,从而大幅减少需要训练的参数数量。---\paragraph{1.背景:微调与参数效率}在自然语言处理(NLP)中,大型语言模型(如GPT、BERT等)通过预训练学习了丰富的语言知识。然而,为了适应特定任务或新数据,通
- [特殊字符]️用Python打造全能型新闻爬虫:抓取全文+图片+视频的完整攻略(含最新Playwright方案)
Python爬虫项目
python爬虫数据分析开发语言音视频javascript数据挖掘
一、前言:为什么要抓取新闻网站全文?在大数据、人工智能风口之上,构建新闻语料库用于训练自然语言处理(NLP)模型、情感分析、热点追踪等任务变得愈发重要。然而,大多数新闻网站并不提供开放的API,内容分散在网页的各个结构中,因此我们必须编写一个功能齐全的爬虫来抓取文章、图片、视频等多种内容。️二、技术选型与环境准备主要依赖库库名用途Playwright最新浏览器自动化技术,支持动态页面渲染Beaut
- 信而泰×DeepSeek:AI推理引擎驱动网络智能诊断迈向 “自愈”时代
DeepSeek-R1:强大的AI推理引擎底座DeepSeek是由杭州深度求索人工智能基础技术研究有限公司开发的新一代AI大模型。其核心优势在于强大的推理引擎能力,融合了自然语言处理(NLP)、深度学习、大规模数据分析等前沿技术。DeepSeek-R1具备卓越的逻辑推理、多模态分析(文本/图像/语音)和实时交互能力,能够高效处理代码生成、复杂问题求解、跨模态学习等高阶任务。凭借其开源、高效、多模态
- NLP论文速读|chameleon:一个即插即用的组合推理模块Plug-and-Play Compositional Reasoning with Large Language Models
Power2024666
NLP论文速读自然语言处理人工智能机器学习深度学习nlp语言模型
论文速读|Chameleon:Plug-and-PlayCompositionalReasoningwithLargeLanguageModels论文信息:简介:该论文介绍了一个名为Chameleon的人工智能系统,旨在解决大型语言模型(LLMs)在处理复杂推理任务时存在的固有限制,例如无法访问最新信息、使用外部工具以及执行精确的数学和逻辑推理。Chameleon通过插入即用模块增强LLMs,使其
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL