- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- 论文:SOLO: Segmenting Objects by Locations
小仙女呀灬
图像分割计算机视觉机器学习人工智能
作者摘要我们提出了一种新的、非常简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“先检测后分割”策略(例如,MaskR-CNN),要么先预测嵌入向量,然后使用聚类技术将像素分组到单个实例中。我们通过引入“实例类别”的概念,从全新的角度看待实例分割的任务,它根据实例的位置和大小为实例中的每个像素分配类别,从而
- 深度学习在环境感知中的应用:案例与代码实现
让机器学会“看”世界:深度学习如何赋能环境感知?关键词深度学习|环境感知|计算机视觉|传感器融合|语义分割|目标检测|自动驾驶摘要环境感知是机器与外界互动的“眼睛和耳朵”——从自动驾驶汽车识别行人,到智能机器人避开障碍物,再到城市监控系统检测异常,所有智能系统都需要先“理解”环境,才能做出决策。传统环境感知方法依赖手工特征提取,难以应对复杂场景;而深度学习通过数据驱动的方式,让机器从大量数据中自动
- BEV+Transformer
Monkey PilotX
自动驾驶transformer深度学习人工智能
在自动驾驶系统中,BEV(Bird’sEyeView)+Transformer主要应用于感知与环境建图(Perception&SceneUnderstanding)环节,尤其是在多传感器融合、目标检测、语义分割、轨迹预测等任务中。在自动驾驶中的关键应用场景应用环节BEV+Transformer的作用感知(Perception)多摄像头图像融合成BEV视角,进行目标检测、语义分割预测(Predict
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 语义分割模型的轻量化与准确率提升研究
pk_xz123456
仿真模型深度学习算法transformer深度学习人工智能算法数据结构
语义分割模型的轻量化与准确率提升研究1.引言语义分割是计算机视觉领域的核心任务之一,它要求模型为图像中的每个像素分配一个类别标签。随着深度学习的发展,语义分割模型在多个领域得到了广泛应用,如自动驾驶、医学影像分析、遥感图像解译等。然而,现有的语义分割模型往往面临两个主要挑战:模型复杂度高导致难以部署在资源受限的设备上,以及准确率仍有提升空间以满足实际应用需求。本文将从模型轻量化和准确率提升两个角度
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- 【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
heimeiyingwang
算法深度学习算法人工智能
一、为什么需要Winograd卷积算法?从“卷积计算瓶颈”说起在深度学习领域,卷积神经网络(CNN)被广泛应用于图像识别、目标检测、语义分割等任务。然而,卷积操作作为CNN的核心计算单元,其计算量巨大,消耗大量的时间和计算资源。随着模型规模不断增大,传统卷积算法的计算效率成为限制深度学习发展的一大瓶颈。Winograd卷积算法的出现,犹如一把利刃,直击传统卷积计算的痛点。它通过巧妙的数学变换,大幅
- 基于深度学习的智能图像语义分割系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能python分类音视频机器学习sklearn
前言图像语义分割是计算机视觉领域中的一个重要任务,其目标是将图像中的每个像素分配到预定义的语义类别中。这一技术在自动驾驶、医学影像分析、机器人视觉等多个领域有着广泛的应用。近年来,深度学习技术,尤其是卷积神经网络(CNN)及其变体,为图像语义分割带来了显著的改进。本文将详细介绍基于深度学习的智能图像语义分割系统的原理、实现方法以及实际应用案例。一、图像语义分割的基本概念1.1什么是图像语义分割?图
- [论文阅读]PIDNet: A Real-time Semantic Segmentation Network Inspired by PID Controllers
颜笑晏晏
论文阅读
1.摘要双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调(overshoot),这限制了现有两个分支模型的准确性的提高。在本文中,我们在卷积神经网络(CNN)和比例积分微分(PID)控制器之间架起了桥梁,并揭示了双分支网络只是一个比例积分(PI)控制器,当然也会存在类似的超调问题。为了解决这个问题,
- 【GitHub开源项目实战】DINOv2 自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析
观熵
GitHub开源项目实战github开源架构人工智能
DINOv2自监督视觉模型深度解构:多任务零微调性能与多分辨率表征架构解析关键词DINOv2、自监督视觉模型、ViT、多分辨率表示、语义分割、深度估计、Zero-shot、图像表示学习、OpenCLIP替代、MetaAI摘要DINOv2是由MetaAIResearch推出的下一代自监督视觉基础模型,在保持不依赖人工标签的前提下,显著提升了多任务性能,尤其在语义分割、图像分类、深度估计等下游任务中超
- python批量修改xml文件
爱上答复
xml
计算机视觉领域是当下比教热门的一个研究领域,包括目标检测,实例分割,语义分割等,不可避免会涉及到xml文件的修改,如果一两个文件的话,修改起来还算简答,但是实际情况中,远不止一个文件,且一个文件中也会包含多组属性。所以直接上代码,我习惯用pycharm编辑器来实现。importxml.dom.minidomforiinrange(0,100,5):path1="xxx"+str(i)+".xml"
- 鸿蒙开发实战之Image Kit重构美颜相机图像处理管线
harmonyos-next
一、核心能力突破通过ImageKit实现三大技术革新:硬件加速处理4K图像处理延迟降至16ms(NPU+GPU协同)支持10bitHDR管线(BT.2020色域)AI增强算法实时皮肤质感分析(98%毛孔保留率)智能背景重构(语义分割精度±1像素)跨平台一致性相同算法在麒麟/骁龙平台输出差异{updatePreview(result);});//超分辨率重建image.superResolution
- 【语义分割专栏】3:Segnet原理篇
fouen
语义分割人工智能计算机视觉深度学习神经网络pytorch
文章目录前言背景介绍Segnet核心剖析池化索引(poolingIndices)其他细节编码器解码器的对称结构Segnet模型代码结语参考资料前言本篇文章收录于语义分割专栏,如果对语义分割领域感兴趣的,可以去看看专栏,会对经典的模型以及代码进行详细的讲解哦!其中会包含可复现的代码!带大家深入语义分割的领域,将从原理,代码深入讲解,希望大家能从中有所收获,其中很多内容都包含着自己的一些想法以及理解,
- COCO-Stuff数据集:基于YOLOv5的多类别目标检测与分割实现
YOLO实战营
深度学习YOLO实战项目YOLO目标检测人工智能无人机计算机视觉数据挖掘ui
一、引言随着计算机视觉领域的不断发展,目标检测和语义分割已经成为深度学习中的两个关键任务。COCO-Stuff是一个包含多达172个类别的大型数据集,用于训练和评估计算机视觉算法。与传统的COCO数据集不同,COCO-Stuff不仅包含常见的物体检测任务,还增加了诸如“天空”、“树木”和“路面”等场景理解任务。通过对这个数据集的处理与利用,我们可以构建一个更加丰富的目标检测与语义分割系统。本博客将
- 深度学习之路——CNN卷积神经网络详解
DeepLinkDeepLink
Ai深度学习cnn人工智能
深度学习之路——CNN卷积神经网络详解前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)作为深度学习领域的基础模型,推动了人工智能在图像、视频等方向的爆炸式发展。无论是图像分类、目标检测,还是语义分割、自动驾驶,CNN几乎无处不在。本文将带你系统了解CNN的基本原理、结构组成、常用网络、应用场景及简单代码实现。1.什么是CNN?CNN是一类专门处理类似网格结构数据(如
- 【仿生系统】qwen的仿生机器人解决方案
DFminer
机器人
收到完整需求后,我将从系统架构设计、算法实现路径、训练方法三个维度为您构建完整的仿生机器人解决方案。以下是分阶段实施方案:一、核心系统架构设计(模块化可进化架构)1.多模态感知引擎-视觉子系统:YOLOv8+SAM组合实现实时物体检测+场景语义分割-听觉子系统:Whisper+SpeakerEmbedding+情感识别三重处理-语言理解:基于LLaMA3的增量式语义解析(IncrementalPa
- 相机--RGB相机
猿饵块
数码相机
教程RGB--深度相机--激光雷达RGB相机原理:仅捕获红(R)、绿(G)、蓝(B)三通道的彩色图像,输出2D像素矩阵,无深度信息。核心作用:2D视觉任务:目标检测、图像分类、语义分割(如YOLO、ResNet)。优点:成本低:单传感器,硬件简单(如普通手机摄像头)。缺点:无深度信息:需额外算法或传感器获取3D数据。RGB相机和单目相机定义区别名称定义角度典型输出是否包含深度信息RGB相机数据格式
- 自动驾驶可行驶区域划分综述
吃旺旺雪饼的小男孩
自动驾驶自动驾驶人工智能机器学习
可行使区域划分1.数据采集与融合的深度解析1.1传感器类型与数据特性1.2多传感器融合方法2.环境感知与特征提取的细节2.1车道线检测技术2.2道路边界识别2.3障碍物检测与区域划分3.可行驶区域划分的实现3.1语义分割与几何建模3.2动态场景处理4.路径规划与决策的细节4.1局部路径规划4.2全局路径规划5.关键技术挑战的深入分析5.1复杂场景处理5.2实时性与计算优化5.3安全与冗余设计6.典
- 深度学习在建筑物提取中的应用综述
一瞬祈望
数据集深度学习人工智能
深度学习在建筑物提取中的应用综述目录深度学习在建筑物提取中的应用综述@[toc](目录)深度学习在建筑物提取中的应用综述一、建筑物提取简介二、深度学习方法分类1.语义分割(SemanticSegmentation)2.实例分割(InstanceSegmentation)3.边界感知分割(Boundary-awareSegmentation)4.多模态融合方法三、主流建筑物提取公开数据集及分析四、数
- 使用paddleX进行目标检测详解
狸不凡
机器学习深度学习神经网络
前言使用百度开源的paddleX工具,我们可以很容易快速训练出使用我们自己标注的数据的目标检测,图像分类,实例分割,语义分割的深度网络模型,本文,主要记录如何全流程使用pddleX来训练一个简单用于检测猫狗ppyolo_tiny模型。(一)数据准备这里的图片,我们直接在百度图片上搜索“猫狗”,随机下载10张图片,存到“JPEGImages文件夹”里。(二)使用labelme标注工具进行标注(1)l
- 高精地图与SLAM:依赖停车场高精地图提供结构信息,结合SLAM(同步定位与地图构建)技术实现实时定位与导航
百态老人
人工智能机器学习算法
基于现有资料,截至2025年3月1日,高精地图与SLAM技术在停车场场景中的结合应用主要体现在以下几个方面:1.SLAM的实时定位与增量地图构建SLAM技术通过激光雷达、摄像头、IMU等传感器实时采集环境特征(如停车场内的柱子、停车线、减速带等),并利用算法(如GraphSLAM、EKF、视觉语义分割)进行匹配定位,同时构建增量式地图。这种能力使得车辆即使初次进入未知停车场,也能在无GNSS信号的
- PaddleX 使用案例
非小号
AIscikit-learnpytorch人工智能python机器学习
以下是PaddleX的典型使用案例,涵盖图像分类、目标检测和语义分割三大场景,展示其从数据准备到模型部署的全流程:案例1:图像分类-垃圾分类识别场景:识别可回收垃圾、有害垃圾、厨余垃圾和其他垃圾四类图片。步骤1:数据准备与标注#1.创建项目目录mkdirgarbage_classification&&cdgarbage_classification#2.下载示例数据集(约2000张图片,4分类)w
- 飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)
非小号
AIpaddlepaddle机器学习人工智能
以下是飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)中常用的模型、函数及工具链,结合其生态特点分类说明:一、数据采集与标注1.数据采集工具PaddleX(图像/视频场景)功能:支持图像分类、目标检测、语义分割任务的数据标注,集成标注工具(如矩形框、多边形标注)。官网工具:PaddleX数据标注工具用法:通过图形化界面或命令行启动标注工具,输出标准VOC/
- 基于RGB与多光谱图像的农田语义分割技术研究及应用
中达瑞和-高光谱·多光谱
相机
随着智慧农业的发展,精准监测农田环境与作物生长状态成为关键需求。传统遥感技术受限于光谱分辨率与成像条件,难以满足精细化管理要求。本文以无人机搭载中达瑞和S810多光谱相机为技术载体,结合深度学习算法,提出单模态与多模态融合的农田语义分割方法。通过构建专用数据集与创新网络架构,显著提升了复杂场景下的分割精度与环境适应性,为精准农业提供了高效解决方案。一、研究背景与技术挑战农业生产的数字化监测依赖高精
- 动态神经网络(Dynamic NN)在边缘设备的算力分配策略:MoE架构实战分析
学术猿之吻
神经网络架构人工智能算法量子计算深度学习机器学习
一、边缘计算场景的算力困境在NVIDIAJetsonOrinNX(64TOPSINT8)平台上部署视频分析任务时,开发者面临三重挑战:动态负载波动视频流分辨率从480p到4K实时变化,帧率波动范围20-60FPS能效约束设备功耗需控制在15W以内(被动散热)多任务耦合典型场景需同步处理:目标检测(YOLOv8s)行为识别(SlowFast)语义分割(DeepLabv3)二、MoE架构的核心技术解析
- 助力移动机器人下游任务!Mobile-Seed:联合语义分割和边缘检测
3D视觉工坊
3D视觉从入门到精通计算机视觉
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:语义分割,拉你入群。文末附行业细分群0.写在前面移动机器人经常需要定位语义目标和目标边缘,但大多数研究只集中在语义分割的部署上。今天笔者为大家推荐一篇开源工作,实现了语义分割和边缘检测的联合学习。下面一起来阅读一下这项工作~1.论文信息标题:Mobile-Seed:JointS
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要