- Android CameraX 使用指南:简化相机开发
安卓开发者
AndroidJetpack数码相机android
前言在Android开发中,相机功能一直是比较复杂的部分,需要处理不同设备的兼容性、生命周期管理以及复杂的API调用。Google推出的CameraX库极大地简化了这一过程,让开发者能够更轻松地实现高质量的相机功能。本文将带你全面了解CameraX的使用方法。什么是CameraX?CameraX是Jetpack系列中的一个库,它基于Camera2API构建,但提供了更高层次的抽象,具有以下优点:简
- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- 研讨会预告:基于 NVIDIA Omniverse 构建 Physical AI 应用,解锁 Physical AI 的落地路径
CSDN资讯
人工智能
在生成式AI持续革新虚拟内容生产的同时,一种面向现实世界的AI正悄然兴起——物理AI(PhysicalAI)。它赋能机器人、自动驾驶等自主系统在三维空间中完成感知、理解与互动,让AI走出屏幕,触碰现实。借助NVIDIAOmniverse、Cosmos、IsaacSim等平台,开发者正在加速构建真实可用的物理智能体。加入本期精讲堂,探索如何利用端到端工具链快速推进AI与物理世界的深度融合。基于NVI
- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- vLLM专题(三)-快速开始
AI专题精讲
大模型专题系列人工智能
本指南将帮助您快速开始使用vLLM执行:离线批量推理使用OpenAI兼容服务器进行在线服务1.先决条件操作系统:LinuxPython:3.9–3.122.安装如果您使用的是NVIDIAGPU,您可以直接使用pip安装vLLM。建议使用uv,一个非常快速的Python环境管理器,来创建和管理Python环境。请按照文档安装uv。安装uv后,您可以创建一个新的Python环境,并使用以下命令安装vL
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- 存算一体架构或成为AI处理器技术发展关键
神州问学
人工智能架构gpu算力算法语言模型
©作者|坚果来源|神州问学引言马斯克巨资60亿美元打造的“超级算力工场”,通过串联10万块顶级NVIDIAH100GPU,不仅震撼了AI和半导体行业,促使英伟达股价应声上涨6%,还强烈暗示了AI大模型及芯片需求的急剧膨胀。这一行动不仅是马斯克对AI未来的大胆押注,也成为了全球企业加速布局AI芯片领域的催化剂,预示着一场科技革新竞赛的全面升级,各方竞相提升算力,争夺AI时代的战略高地。观察近期Bla
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- LLM微调训练指南
小小怪 @
人工智能自然语言处理
模型选择策略开源LLM的选择需综合评估任务需求与资源限制:LLaMA-2(7B/13B/70B):商用友好,推荐使用HuggingFace格式的社区变体(如NousResearch版本)Mistral(7B):Apache2.0许可,在推理和数学任务表现突出Falcon(7B/40B):商业授权宽松,特别适合多轮对话场景硬件匹配参考:NVIDIA3090可微调7B模型(QLoRA),A100建议尝
- Android Room 持久化库:简化数据库操作
安卓开发者
AndroidJetpackandroid数据库
什么是Room?Room是Google官方推出的一个SQLite对象映射库,它是AndroidJetpack组件的一部分。Room在SQLite的基础上提供了一个抽象层,让开发者能够更流畅地访问数据库,同时又能充分利用SQLite的全部功能。Room的主要优势在于:编译时SQL查询验证减少了大量样板代码与LiveData、RxJava等无缝集成提供了简单的注解方式来定义数据库结构Room的核心组件
- 深度学习GPU工作站主机选择指南:以RTX 5090为核心的2025年配置策略
前言2025年,随着NVIDIARTX5090的发布,深度学习硬件领域迎来了革命性的变化。这款基于Blackwell架构的旗舰GPU不仅在游戏领域表现卓越,更在AI和深度学习应用中展现出前所未有的性能实力。对于深度学习研究者和工程师而言,RTX5090的出现重新定义了工作站配置的标准,其32GBGDDR7显存、768个第五代TensorCore以及大幅提升的计算性能,为大规模模型训练和推理提供了全
- Android Jetpack 组件库 ->WorkManager
消失的旧时光-1943
jetpackandroidjetpackandroid
引言为什么需要WorkManager?传统后台任务的问题://传统方式-手动管理后台任务classMainActivity:AppCompatActivity(){overridefunonCreate(savedInstanceState:Bundle?){super.onCreate(savedInstanceState)//问题1:无法保证任务执行Thread{//后台任务downloadF
- Android LiveData 全面解析:原理、使用与最佳实践
安卓开发者
AndroidJetpackandroid
一、LiveData概述LiveData是AndroidJetpack组件库中的一个重要成员,它是一种可观察的数据持有者类,具有生命周期感知能力。LiveData遵循观察者模式,当数据发生变化时,它会通知处于活跃生命周期状态的观察者。LiveData的核心特点生命周期感知:自动管理观察者的订阅,避免内存泄漏数据更新通知:仅在数据变化时通知活跃的观察者配置更改保持:屏幕旋转等配置更改时自动保留最新数
- 三星数据被黑客泄露、罗马尼亚加油站网络遭勒索攻击|3月8日全球网络安全热点
腾讯安全
网络安全
安全资讯报告攻击英伟达的黑客泄露了三星数据据报道,攻击并泄露Nvidia的黑客组织LAPSUS$发布了它所描述的“三星机密源代码”。该黑客组织此前曾从Nvidia窃取机密信息。BleepingComputer报告称,LAPSUS$泄露了近190GB的数据,据称其中包括TrustZone环境使用的受信任小程序的源代码、最近三星设备的引导加载程序以及与三星帐户相关的技术等。LAPSUS$声称也泄露了“
- 光影双生:实时与离线渲染的共生竞合图景
渲吧-云渲染
3d
曾经,渲染是场漫长等待的幕后魔法,耗时数小时甚至数日方能呈现一帧精妙画面。如今,实时渲染以其“即时可见”的魅力正重塑视觉创作格局。然而,这并非一场简单的替代,实时渲染与离线渲染正走向深度共生与博弈的平衡。实时渲染:速度与交互的跃升技术洪流正强力驱动实时渲染的进化。GPU算力的指数级增长,从固定管线到高度可编程渲染管线的革命性跨越,为实时图形解锁了前所未有的自由度。NVIDIAOptiX等光线追踪引
- 【bug】 jetson上opencv无法录制h264本地视频
lxmyzzs
bugopencv音视频
在JetsonOrinNX上无法使用opencv直接录制h264/h265视频流(h264格式的视频流才能在浏览器播放)解决:软件编码:需要源码编译opencv1.环境准备pipuninstallopencv-pythonsudoaptinstallbuild-essentialcmakegitpython3-devpython3-numpy\libavcodec-devlibavformat-d
- WSL2部署训练YOLOv11之环境配置(2025年4月19日)
鱼圆食不食
YOLO
一、前言今天尝试在WSL2环境中部署训练YOLOv11,顺便把环境配置好。二、安装CUDA由于WSL2中并不能直接使用宿主机的显卡,所以需要安装CUDAonWSL以安装NVIDIA驱动到WSL中。注意必须是WSL2,WSL2对GPU的支持使这些应用程序能够受益于GPU加速计算,WSL1不支持。打开cmd或pwsh更新一下WSL内核:wsl.exe--update确保宿主机已安装最新的NVIDIAG
- Android Jetpack Compose + MVI 开发流程深度分析
你过来啊你
androidcomposemvi
MVI架构核心原理MVI(Model-View-Intent)是一种基于单向数据流的架构模式,其核心组件关系如下:[View]--Intents-->[ViewModel]--States-->[View]||用户交互事件处理业务逻辑||[View]=emptyList(),valisLoading:Boolean=false,valerror:String?=null,valnewTodoTit
- Python成第四个支持CUDA的编程语言
Python成第四个支持CUDA的编程语言3月19日NVIDIA的GTC2013图形技术大会将开幕,在此之前会有很多宣传造势内容,其中最重大也是最主要的就是NVIDIA老总黄仁勋的开幕词了,其他合作伙伴也会发布各自的演讲。ContinuumAnalytics联合NVIDIA宣布将会引入新的PythonCUDA编译器——NumbaPro,Python也成为继C、C++以及Fortan之后的第四个支持
- 2025乐彩V8影视系统技术解析:双端原生架构与双H5免签封装实战 双端原生+双H5免签封装+TV级性能优化,一套代码打通全终端生态
CH资源网ch-h点cn(测评师 )
架构性能优化
1.双端原生实现方案Android端:基于Kotlin+JetpackCompose架构,深度优化ExoPlayer内核,支持4KHDR硬解与DRM加密流iOS端:Swift+SwiftUI构建,集成AVFoundation定制播放器,实现画中画与杜比全景声支持TV专属优化:针对AndroidTV和AppleTV分别实现焦点引擎和遥控器键位映射452.双H5站免签封装方案系统创新性地实现双H5站点
- Android-Compose初步学习总结
一、JetpackCompose的生命周期JetpackCompose中,组合是由可组合项构成的树状结构,用于描述应用界面。它通过初始组合生成,并仅能通过重新组合更新——当应用状态变化时,Compose会安排重新组合,仅重新执行受状态变化影响的可组合项,而非整个UI树。可组合项的生命周期包含三个阶段:进入组合、经历0次或多次重新组合、最终离开组合。组合中可组合项的实例由其调用点(即调用可组合项的源
- Android-jetpack之DataBinding实战应用
一、DataBinding基础配置1.启动流程在build.gradle中启用:android{dataBinding{enabled=true}}这会让编译器为每个布局文件生成对应的绑定类(如ActivityMainBinding、DetailsFragmentBinding)。2.布局文件转换将普通布局文件转换为DataBinding布局,需要在根标签外包裹标签:二、绑定基础操作1.绑定基本数
- 从 0 到 1 搞定nvidia 独显推流:硬件视频编码环境安装完整学习笔记
lxmyzzs
图像算法之音视频编解码音视频学习笔记
笔记用于安装和配置一套完整的媒体处理工具链,包括NVIDIA编码头文件、带CUDA加速的FFmpeg以及ZLMediaKit流媒体服务框架,适用于需要进行视频编解码、流媒体推流/拉流等场景的开发与部署。标题核心组件及版本说明nv-codec-headers来源:Gitee仓库jario-jin/nv-codec-headers版本:n11.1.5.0(对应NVIDIAVideoCodecSDK接口
- AI周报:技术面试卷出新高度,Agent落地开启“工具觉醒”时代
哪小吒圈子
人工智能语言模型
一句话暴论:当面试官要求手搓FP16精度时,真正的考题是“你能否在硅基文明觉醒前跟上进化速度”。一、面试地狱难度实录(开发者生存指南)百度二面手搓FP16精度:考的不是浮点数,而是对硬件底层的敬畏(原文)腾讯夺命11连问:混元大模型面试暴露行业真相——懂原理已不够,得会调参、训推、修故障的“全栈炼丹师”(解析)NVIDIA四轮拷打实录:GPU厂面试竟考Attention优化!LightingAtt
- Jetpack Compose 学习:掌握 ModalBottomSheet(底部弹窗)
bpluo42657
android
ModalBottomSheet是MaterialDesign中一个非常实用的组件,用于从屏幕底部向上滑动显示一个模态化的内容面板(如菜单、选项、详情)。在JetpackCompose中,实现它变得异常简洁优雅。本文将带你深入理解其用法。核心概念模态化(Modal):当底部弹窗显示时,它会覆盖在屏幕主要内容之上,并阻止用户与底层内容的交互(通常底层内容会变暗),直到用户关闭弹窗。状态驱动:Comp
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- YOLO11-obb使用C++及trt进行推理(详细版)
范男
c++目标检测计算机视觉YOLO图像处理
针对YOLO的使用.engine权重及C++代码进行推理使用TensorRT-YOLO项目网站是:https://github.com/laugh12321/TensorRT-YOLO可以直接选择git或者下载下来gitclonehttps://github.com/laugh12321/TensorRT-YOLOcdTensorRT-YOLO1.编译主程序教程网址是:https://github
- 深度学习分布式训练:并行策略与通信机制的系统性分析
Takoony
深度学习分布式人工智能
1.引言随着深度学习模型规模的指数级增长,单一计算设备已无法满足训练需求。以GPT-3为例,其1750亿参数在FP16精度下需要约350GB存储空间(每个参数2字节),远超当前主流GPU的显存容量(如NVIDIAA100的80GB)。根据OpenAI的技术报告[1],即使使用最先进的硬件,单卡训练GPT-3需要355年。这一计算瓶颈催生了分布式训练技术的快速发展。本文将从理论基础出发,系统性地分析
- 大模型部署的整体架构
flyair_China
人工智能云计算架构
一、大模型部署架构1.1部署架构大模型部署的整体架构是一个多层次、软硬件协同的系统工程,旨在解决模型规模庞大、计算资源密集、延迟敏感等挑战。1.1.1、基础架构层:硬件资源与网络算力集群GPU/NPU阵列:如NVIDIAA100/H100/H200/H800、华为昇腾、昆仑芯等,支持FP16/INT8量化计算,显存带宽需达TB级(如HBM3e显存带宽达3.35TB/s)。异构计算:CPU+GPU/
- Kimi-Audio:最佳音LLM, 如何免费使用 Kimi-Audio AI 模型?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能kimi
简介继DeepSeek之后,字节跳动(现名MoonShotAI,又名Kimi)也在生成式人工智能领域加速发展,并发布了自己的音频模型Kimi-Audio,据说是迄今为止最好的音频模型。推荐文章《NvidiaGPU入门教程之02ubuntu安装A100显卡驱动(含8步快速浓缩教程)》权重2,安装A100显卡驱动《本地大模型知识库OpenWebUI系列之如何解决知识库上传文件故障Extractedco
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓