POJ 3132 Sum of Different Primes ( 满背包问题)

Sum of Different Primes
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3280   Accepted: 2040

Description

A positive integer may be expressed as a sum of different prime numbers (primes), in one way or another. Given two positive integers n and k, you should count the number of ways to express nas a sum of k different primes. Here, two ways are considered to be the same if they sum up the same set of the primes. For example, 8 can be expressed as 3 + 5 and 5 + 3 but the are not distinguished.

When n and k are 24 and 3 respectively, the answer is two because there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to 24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one, because there is only one set {2} whose sum is 2. For n = 1 and k = 1, the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For n = 4 and k = 2, the answer is zero, because there are no sets of two different primes whose sums are 4.

Your job is to write a program that reports the number of such ways for the given n and k.

Input

The input is a sequence of datasets followed by a line containing two zeros separated by a space. A dataset is a line containing two positive integers n and k separated by a space. You may assume that n ≤ 1120 and k ≤ 14.

Output

The output should be composed of lines, each corresponding to an input dataset. An output line should contain one non-negative integer indicating the number of the ways for n and k specified in the corresponding dataset. You may assume that it is less than 231.

Sample Input

24 3 

24 2 

2 1 

1 1 

4 2 

18 3 

17 1 

17 3 

17 4 

100 5 

1000 10 

1120 14 

0 0

Sample Output

2 

3 

1 

0 

0 

2 

1 

0 

1 

55 

200102899 

2079324314

Source

题目大意:

  这道题是说,给你一个数字n,然后让你用仅仅含有k个素数的集合来描述(就是取k个素数使得他们的和是n),问这样的集合有多少个.

解题思路:

  一看到后,就想到了背包问题,把这个背包塞满的问题,定义如下状态:

  dp[i][j]表示的是把数字i分成j个素数的集合的所有情况数。

  初始状态:dp[1][1] = 0;//从题目中的信息知道的

       dp[0][0] = 1;//这个初值条件是硬加上去的,要不然的话dp[0][0]就无法递推了,永远都是0了。QAQ

代码:

 1 # include<cstdio>

 2 # include<iostream>

 3 # include<fstream>

 4 # include<algorithm>

 5 # include<functional>

 6 # include<cstring>

 7 # include<string>

 8 # include<cstdlib>

 9 # include<iomanip>

10 # include<numeric>

11 # include<cctype>

12 # include<cmath>

13 # include<ctime>

14 # include<queue>

15 # include<stack>

16 # include<list>

17 # include<set>

18 # include<map>

19 

20 using namespace std;

21 

22 const double PI=4.0*atan(1.0);

23 

24 typedef long long LL;

25 typedef unsigned long long ULL;

26 

27 # define inf 999999999

28 # define MAX 1120+4

29 

30 

31 int dp[MAX][MAX];//dp[i][j]表示把数字i分解为由j个素数组成的集合数目

32 int book[MAX];

33 int prime[MAX];

34 int len;

35 

36 

37 void init()

38 {

39     for ( int i = 2;i <= MAX;i++ )

40     {

41         book[i] = 1;

42     }

43     for ( int i = 2;i <= MAX;i++ )

44     {

45         if ( book[i]==1 )

46         {

47             for ( int j = 2*i;j <= MAX;j+=i )

48             {

49                 book[j] = 0;

50             }

51         }

52     }

53     len = 0;

54 

55     for ( int i = 2;i <= MAX;i++ )

56     {

57         if ( book[i]==1 )

58         {

59             prime[++len] = i;

60         }

61     }

62 }

63 

64 void solve()

65 {

66         memset(dp,0,sizeof(dp));

67         dp[0][0] = 1;

68         dp[1][1] = 0;

69         for ( int i = 1;i <= len;i++ )

70         {

71             for ( int j = MAX;j >= prime[i];j-- )

72             {

73                 for ( int k = 1;k <= 14;k++ )

74                 {

75                     dp[j][k] += dp[j-prime[i]][k-1];

76                 }

77             }

78         }

79 }

80 

81 

82 int main(void)

83 {

84 

85     init();

86     int n,k;

87     while ( cin>>n>>k )

88     {

89         if ( n==0&&k==0 )

90             break;

91         solve();

92         cout<<dp[n][k]<<endl;

93     }

94 

95 

96     return 0;

97 }

 

你可能感兴趣的:(diff)