- Hive使用必知必会系列
王知无(import_bigdata)
Hive系统性学习专栏hivebigdatahdfs
一、Hive的几种数据模型内部表(Table将数据保存到Hive自己的数据仓库目录中:/usr/hive/warehouse)外部表(ExternalTable相对于内部表,数据不在自己的数据仓库中,只保存数据的元信息)分区表(PartitionTable将数据按照设定的条件分开存储,提高查询效率,分区----->目录)桶表(BucketTable本质上也是一种分区表,类似hash分区桶---->
- Consul 与 Hive:云原生数据仓库集成
AI云原生与云计算技术学院
AI云原生与云计算数据仓库consulhiveai
Consul与Hive:云原生数据仓库集成关键词:Consul、Hive、云原生、数据仓库集成、服务发现摘要:本文深入探讨了Consul与Hive在云原生环境下的数据仓库集成。首先介绍了集成的背景和相关概念,包括Consul的服务发现机制和Hive作为数据仓库的特点。接着详细阐述了核心概念及联系,通过文本示意图和Mermaid流程图展示其架构。对集成所涉及的核心算法原理进行了讲解,并给出Pytho
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- SAP BW数据仓库总览
weixin_42559081
[分享]SAPBW数据仓库简介本文从一个简单的业务场景-销售分析入手,介绍SAPBW(BusinessInfomationWarehouse)实现多维分析的基本方案与实现技术;结合销售分析的实际需求,给出了销售分析管理数据仓库在SAPBW(业务信息仓库)模块中的实现过程描述。1、数据仓库的基本理论1.1数据仓库数据仓库是对数据进行提炼、加工和集成含有一定量商务信息和意义的信息。数据仓库不是为了存储
- 数据江湖的“三国演义”:数据仓库、数据湖与湖仓一体的全景对比
大模型大数据攻城狮
数据仓库数据湖湖仓一体IceberghudiSnowflake流式计算
目录1.数据仓库:秩序井然的“中央档案馆”核心特点:一切为了分析优势:稳定如山,分析无敌短板:灵活性欠佳实战案例:零售巨头的销售分析2.数据湖:自由奔放的“原始丛林”核心特点:包容一切优势:灵活到飞起短板:自由的代价实战案例:流媒体平台的用户行为分析3.湖仓一体:兼得鱼与熊掌的“新物种”核心特点:两全其美优势:全能选手短板:尚在成长实战案例:金融科技的实时风控4.技术选型的“天平”:如何选择适合你
- 【亲测免费】 官方Kettle最新8.2版本下载介绍
岑婵泉Polly
官方Kettle最新8.2版本下载介绍【下载地址】官方Kettle最新8.2版本下载介绍Kettle是一款功能强大的开源ETL工具,专为数据抽取、转换和加载而设计。它由纯Java编写,支持跨平台操作,适用于Windows、Linux和Unix系统。Kettle以其高效稳定的数据处理能力,成为数据工程师的首选工具。它的中文名“水壶”寓意将各种数据汇聚并按照指定格式输出,广泛应用于数据仓库建设和数据清
- 数据空间技术在智慧水库管理平台中的赋能
小赖同学啊
testTechnologyPrecious物联网
数据空间技术在智慧水库管理平台中的赋能:设备到应用的数据传输优化数据空间技术为智慧水库管理平台提供了革命性的数据传输、处理和安全保障能力。以下是数据空间技术在设备到应用数据传输过程中的全面赋能方案:数据空间赋能架构设计中心层区域层设备层数据预处理边缘计算本地决策协议转换数据聚合安全传输元数据管理数据治理访问控制数据服务长期存储业务应用系统数据分析平台数据仓库区域数据空间网关中心数据空间平台边缘数据
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- 28、 拥抱数据湖架构
火箭统
数据湖数据仓库大数据架构
拥抱数据湖架构1.数据湖简介在当今数据驱动的世界中,数据湖架构已经成为处理和存储海量数据的有效解决方案。数据湖不仅能够保存来自各种不同来源的原始格式的数据,还为企业提供了灵活且强大的数据分析能力。本文将探讨数据湖架构的概念、优势以及如何在实际中应用数据湖架构来解决数据存储和处理的问题。数据湖的概念最早于2011年被提出。与传统数据仓库不同,数据湖允许企业在不预先定义数据结构的情况下存储大量数据。数
- 数据湖vs数据仓库:非结构化数据存储的终极对决
AI大数据智能洞察
大数据与AI人工智能数据仓库ai
数据湖vs数据仓库:非结构化数据存储的终极对决关键词:数据湖,数据仓库,非结构化数据,数据存储,Schema-on-Read,Schema-on-Write,数据治理摘要:本文深入对比数据湖与数据仓库在非结构化数据存储领域的核心差异,从技术架构、数据处理范式、应用场景等维度展开分析。通过数学模型、代码实战和典型案例,揭示两者在非结构化数据管理中的优势与局限,为企业数据架构选型提供决策参考。1.背景
- 解锁Hive:高效数据查找的秘密武器
YangRyeon
hivehadoop数据仓库
Hive是什么?Hive是基于Hadoop的一个数据仓库工具,它能够进行数据提取、转化和加载操作,为存储、查询和分析Hadoop中的大规模数据提供了有效的机制。Hive能将结构化的数据文件映射为一张数据库表,让用户可以通过熟悉的SQL查询功能来处理数据。其内部机制是将SQL语句巧妙地转变成MapReduce任务来执行,大大降低了开发的难度和复杂性。例如,在面对海量的用户行为日志数据时,Hive就能
- 大数据领域数据架构的市场营销数据分析
AI大数据智能洞察
大数据与AI人工智能大数据AI应用大数据架构数据分析ai
大数据领域数据架构的市场营销数据分析:从数据洪流到营销决策的魔法桥梁关键词:大数据架构、市场营销分析、数据生命周期、RFM模型、实时数据处理、数据仓库、营销决策支持摘要:在这个"数据比石油更宝贵"的时代,企业每天都在被来自用户行为、交易记录、社交媒体等渠道的海量数据淹没。但对市场营销而言,“有数据"不等于"能决策”,就像拥有一堆未经打磨的矿石不等于拥有黄金。本文将以"数据架构"为核心,用生活化的比
- Doris与StarRocks关系解析:大数据技术演进
AI大数据智能洞察
大数据与AI人工智能大数据AI应用大数据ai
Doris与StarRocks关系解析:大数据技术演进关键词:Doris,StarRocks,大数据分析,OLAP,MPP架构,开源技术,数据仓库摘要:在大数据爆炸的时代,我们每天都在产生海量数据——从手机里的聊天记录到电商平台的购物清单,从社交媒体的点赞评论到智能手表的健康数据。如何从这些数据中快速找到有价值的信息,就像在图书馆的百万本书中迅速找到你需要的那一本?OLAP(在线分析处理)系统就是
- MCP 协议:打通 ERP/CRM/ 数据仓库的企业数据集成中枢
在数字化转型浪潮中,企业数据集成始终是绕不开的核心命题。ERP(企业资源计划)系统沉淀着采购、生产、财务等核心交易数据,CRM(客户关系管理)系统存储着客户画像与销售线索,数据仓库则汇聚着历史数据用于战略分析。但传统集成方式下,三者如同孤岛——ERP的结构化数据与CRM的半结构化客户笔记格式冲突,数据仓库的批量同步机制难以匹配ERP的实时交易频率,接口开发需针对不同系统重复编码,每年维护成本占IT
- 软考 | 系统架构设计师:信息系统综合知识大纲(思维导图)
啊有礼貌
软考系统架构设计师架构师思维导图软件架构
1.计算机软件与网络基础知识1.1操作系统操作系统的类型和结构操作系统基本原理网络操作系统及网络管理嵌入式操作系统与实时操作系统1.2数据库系统数据库管理系统的类型、结构和性能评价常用的关系型数据库管理系统数据库模式数据库规范化分布式数据库系统,并行数据库系统数据仓库与数据挖掘技术数据库工程备份恢复1.3嵌入式系统嵌入式系统的特点嵌入式系统的硬件组成与设计嵌入式系统应用软件及开发平台嵌入式系统网络
- DolphinScheduler 如何高效调度 AnalyticDB on Spark 作业?
DolphinScheduler社区
spark大数据分布式
DolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统,能高效地执行和管理大数据流程。用户可以在DolphinSchedulerWeb界面轻松创建、编辑和调度云原生数据仓库AnalyticDBMySQL版的Spark作业。前提条件AnalyticDBforMySQL集群的产品系列为企业版、基础版或湖仓版。AnalyticDBforMySQL集群中已创建Job型资源组
- 数据库和数据仓库区别
hhhecker
Hadoop学习数据仓库数据库hive
HIve与Mysql对比HiveMysql数据存储位置HDFS本地磁盘数据格式用户定义系统决定数据更新不支持(不支持修改和删除)支持(支持增删改查)索引有,但较弱,一般很少用有,经常使用的执行MapReduceExecutor执行延迟高低可扩展性高低数据规模大小数据库与数据仓库对比数据库:传统的关系型数据库主要应用在基本的事务处理,例如银行交易之类的场景数据库支持增删改查这些常见的操作。数据仓库:
- 数据仓库和数据库的区别
神秘打工猴
数据仓库数据库
一,数据仓库数据仓库(DataWarehouse)是一种专门设计用于报告和分析的数据库系统,它允许将来自一个或多个数据源的数据集成、存储和分析。数据仓库的主要目的是支持决策制定,通过提供快速访问历史数据和进行复杂查询的能力。以下是数据仓库的一些关键特性和概念:1.主题导向:数据仓库围绕特定的业务主题构建,如销售、客户或财务,而不是围绕应用程序的功能。2.集成性:数据仓库集成了来自不同源系统的数据,
- 数据仓库是什么,一文读懂数据仓库设计步骤
Leo.yuan
数据数据仓库大数据人工智能数据库信息可视化
目录一、数据仓库:干啥用的?1.数据仓库是啥?2.数据仓库有啥大用?二、设计之前:准备啥?1.搞清楚业务要啥2.摸清数据家底3.划好仓库边界三、概念设计:搭框架1.定好主题域2.分清维度和事实3.画出概念模型四、逻辑设计:定细节1.设计维度表和事实表2.想好怎么存数据3.定好安全规矩五、物理设计:落地实施1.选好数据库软件2.优化数据库性能3.部署上线六、实施与测试:跑起来1.ETL:灌数据2.全
- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- 【Redis篇】数据库架构演进中Redis缓存的技术必然性—高并发场景下穿透、击穿、雪崩的体系化解决方案
奈斯DB
Redis专栏缓存redis数据库架构运维
《博主主页》:CSDN主页__奈斯DBIFClub社区主页__奈斯、《擅长领域》:擅长阿里云AnalyticDBforMySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控;并对SQLserver、NoSQL(Redis)有了解如果觉得文章对你有所帮助,欢迎点赞收藏加关注作为DBA或运维在日常与Redis打交道时,往往更关注部署安装、Key清理、内存回收、备份
- Linux教程(4)----[hive数据仓库工具]
.房东的猫
Linux教程(完善中~~)linux
Hive基本概念Hive简介什么是HiveHive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。为什么使用Hive直接使用hadoop所面临的问题人员学习成本太高
- flink-sql读写hive-1.13
第一片心意
flinkflinksqlhive
1.版本说明本文档内容基于flink-1.13.x,其他版本的整理,请查看本人博客的flink专栏其他文章。1.1.概述ApacheHive已经成为了数据仓库生态系统中的核心。它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样也是一个数据管理平台,可用于发现,定义,和演化数据。Flink与Hive的集成包含两个层面。一是利用了Hive的MetaStore作为持久化的Catalog,用户可通
- 推荐文章:《同济大学软件学院万院长谈择业》
weixin_34087301
同济大学软件学院万院长谈择业一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最大的,因为这是计算
- 计算机系毕业生的前途在哪(一个牛人对计算机系的阐述)
蚊子
嵌入式嵌入式操作系统wincelinux手机游戏j2me
值得未毕业的、刚毕业的、或想转行的朋友们揣摩参考。一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统如:ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件财务软件电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最
- 大学生学软件必看
欧巴Godwin
日志嵌入式嵌入式操作系统wincelinux手机游戏j2me
一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统.企业计算领域对人才的需求显然永远是数量最大的,因为这是计算机应用最多的领域.搞这方面的
- 数据湖与数据仓库在云平台的融合架构:Delta Lake实战指南
AI云原生与云计算技术学院
AI云原生与云计算数据仓库架构ai
数据湖与数据仓库在云平台的融合架构:DeltaLake实战指南关键词:数据湖,数据仓库,云平台,融合架构,DeltaLake,湖仓一体,数据治理摘要:本文深入探讨数据湖与数据仓库在云平台的融合架构,以DeltaLake为核心技术载体,解析湖仓融合的技术原理、实施路径及最佳实践。通过对比传统数据架构的痛点,阐述DeltaLake如何通过ACID事务、Schema管理、时间旅行等特性实现非结构化数据湖
- Hive简介
文章目录Hive简介Hive特点Hive和RDBMS的对比Hive的架构Hive的数据组织Hive数据类型Hive简介1、Hive由Facebook实现并开源2、是基于Hadoop的一个数据仓库工具3、可以将结构化的数据映射为一张数据库表4、并提供HQL(HiveSQL)查询功能5、底层数据是存储在HDFS上6、Hive的本质是将SQL语句转换为MapReduce任务运行7、使不熟悉MapRedu
- 【面试系列】C++ 高频面试题
野老杂谈
全网最全IT公司面试宝典c++面试编程语言
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录C++初级面试题及其详细解答1.解释C
- Docker快速构建Hive测试环境
静谧星光
dockerhive容器编程
Docker是一种流行的容器化平台,可以帮助我们快速构建和管理应用程序的环境。在本文中,我们将学习如何使用Docker快速构建Hive测试环境。Hive是一个基于Hadoop的数据仓库基础设施,它提供了一种类似于SQL的查询语言,用于分析和处理大规模数据集。步骤1:安装Docker和DockerCompose首先,我们需要安装Docker和DockerCompose。您可以根据您的操作系统类型,从
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源