Transformer:Pytorch版本的源码解析

1. 首先加载包:

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn
seaborn.set_context(context="talk")

2. 常用的编码器 - 解码器结构、文本生成结构如下:

encode-函数,encoder-网络结构

src-输入文本,src_mask-掩码的输入文本,src_embed-嵌入后的输入文本

tgt-目标文本,tgt_mask-掩码的目标文本,tgt_embed-嵌入后的目标文本

memory-记忆

编码 encode:encoder(self.src_embed(src), src_mask)

解码 decode:decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

向前传播 forward:decode(self.encode(src, src_mask), src_mask,tgt, tgt_mask)

class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

文本生成结构如下:

线性层:nn.Linear(d_model, vocab)

Softmax层:F.log_softmax(self.proj(x), dim=-1)

class Generator(nn.Module):
    "Define standard linear + softmax generation step."
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        return F.log_softmax(self.proj(x), dim=-1)

3. 编码器

首先定义编码器,六个相同的层采用深拷贝搭建:

def clones(module, N):
    # 产生N个相同的层,N=6
    # ModuleList 可以像常规Python列表一样编制索引,包含的模块已正确注册
    # copy.copy 浅拷贝 只拷贝父对象,不会拷贝对象的内部的子对象
    # copy.deepcopy 深拷贝 拷贝对象及其子对象
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

class Encoder(nn.Module):
    # "Core encoder is a stack of N layers"
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        # 归一化层 LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True)
        # normalized_shape 输入尺寸  [∗×normalized_shape[0]×normalized_shape[1]×…×normalized_shape[−1]]
        # eps-为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5
        # elementwise_affine 布尔值,当设为true,给该层添加可学习的仿射变换参数
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, mask):
        # "Pass the input (and mask) through each layer in turn."
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)

然后构建LayerNorm,在两个子层中分别使用残余连接,然后是层标准化

class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

每个子层的输出是LayerNorm(x+Sublayer(x)),其中Sublayer(x)是由子层本身实现的函数。将dropout应用于每个子层的输出,然后将其添加到子层输入并进行规范化。为了促进这些残余连接,模型中的所有子层以及嵌入层都产生维度为 d_{model}=512的输出。

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

每层有两个子层组成,一是多头自我关注机制multi-head self-attention mechanism,即实现了“多头”的 Self-attention,二是位置完全连接的前馈网络position-wise fully connected feed- forward network。

class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

4. 解码器

新增加了一个编码-解码多头注意力层,其他与编码器相同,也是由6个相同层组成:

class Decoder(nn.Module):
    "Generic N layer decoder with masking."
    # N=6
    def __init__(self, layer, N):
        super(Decoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size)
        
    def forward(self, x, memory, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)

除了每个编码器层中的两个子层之外,解码器还插入了第三种子层,该第三子层对编码器堆栈的输出执行“多头”的Attention。 与编码器类似,我们在每个子层两端使用残差连接,然后进行层的归一化。

class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"
    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)
 
    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        return self.sublayer[2](x, self.feed_forward)

我们还修改了解码器堆栈中的self-attention子层,以防止当前位置参与关注后续位置。这种Masked的Attention是考虑到输出Embedding会偏移一个位置,确保了生成位置i的预测时,仅依赖小于i的位置处的已知输出,相当于把后面不该看到的信息屏蔽掉。

def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0

下面的Attention mask图,显示了每个目标词(即tgt单词)的(行)允许查看的位置(列)。在训练期间,当前解码位置的词不能Attend到后续位置的词。

plt.figure(figsize=(5,5))
plt.imshow(subsequent_mask(20)[0])
None

Transformer:Pytorch版本的源码解析_第1张图片

5. Attention

Attention函数可以将Query和一组Key-Value对映射到输出,其中Query、Key、Value和输出都是向量。 输出是值的加权和,其中分配给每个Value的权重由Query与相应Key的兼容函数计算。我们称这种特殊的Attention机制为"Scaled Dot-Product Attention"。输入包含维度为d_k的Query和Key,以及维度为d_v的Value。 我们首先分别计算Query与各个Key的点积,然后将每个点积除以d_k的平方根,最后使用Softmax函数来获得Key的权重。(每一条数据,Query、Key、Value为vectors向量)

Transformer:Pytorch版本的源码解析_第2张图片

在具体实现时,我们可以以矩阵的形式进行并行运算,这样能加速运算过程。(多条数据为一个batch,Query、Key和Value组合为矩阵)具体来说,将所有的Query、Key和Value向量分别组合成矩阵Q、K和V,这样输出矩阵可以表示为:

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn

两种最常用的Attention函数是加和Attention和乘积Attention,我们的算法与点积Attention很类似,除了\frac{1}{\sqrt{d_k}}的比例因子不同。加和Attention使用具有单个隐藏层的前馈网络来计算兼容函数。虽然两种方法理论上的复杂度是相似的,但在实践中,点积Attention的运算会更快一些,也更节省空间,因为它可以使用高效的矩阵乘法算法来实现。

虽然对于较小的d_k,这两种机制的表现相似,但在不放缩较大的d_k时,加和Attention要优于点积Attention。我们推测对于较大的d_k,点积大幅增大,将Softmax函数推向具有极小梯度的区域(为了阐明点积变大的原因,假设qk是独立的随机变量,平均值为 0,方差 1,这样他们的点积为q\cdot k=\sum_{i=1}^{d_k}q_i\cdot k_i,均值为 0 方差为d_k)。为了抵消这种影响,我们用\frac{1}{\sqrt{d_k}}来缩放点积。

Transformer:Pytorch版本的源码解析_第3张图片

“多头”机制能让模型考虑到不同位置的Attention,另外“多头”Attention可以在不同的子空间表示不一样的关联关系,使用单个Head的Attention一般达不到这种效果。

Transformer:Pytorch版本的源码解析_第4张图片

我们的工作中使用h=8,8个Head并行的Attention,对每一个Head来说有d_k=d_v=\frac{d_{model}}{h}=64,总计算量与完整维度的单个Head的Attention很相近。

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
        
    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)
        
        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]
        
        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)
        
        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)

6. Attention在模型中的应用

Transformer中以三种不同的方式使用了“多头”Attention:

  1. 在"Encoder-Decoder Attention"层,Query来自先前的解码器层,并且Key和Value来自Encoder的输出。Decoder中的每个位置Attend输入序列中的所有位置,这与Seq2Seq模型中的经典的Encoder-Decoder Attention机制一致。
  2. Encoder中的Self-attention层。在Self-attention层中,所有的Key、Value和Query都来同一个地方,这里都是来自Encoder中前一层的输出。Encoder中当前层的每个位置都能Attend到前一层的所有位置。
  3. 类似的,解码器中的Self-attention层允许解码器中的每个位置Attend当前解码位置和它前面的所有位置。这里需要屏蔽解码器中向左的信息流以保持自回归属性。具体的实现方式是在缩放后的点积Attention中,屏蔽(设为−∞)Softmax的输入中所有对应着非法连接的Value。

7. Position-wise前馈网络

  除了Attention子层之外,Encoder和Decoder中的每个层都包含一个全连接前馈网络,分别地应用于每个位置。其中包括两个线性变换,然后使用ReLU作为激活函数。

  虽然线性变换在不同位置上是相同的,但它们在层与层之间使用不同的参数。这其实是相当于使用了两个内核大小为1的卷积。这里设置输入和输出的维数为d_{model}=512,内层的维度为d_{ff}=2048

class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."
    def __init__(self, d_model, d_ff, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(self.dropout(F.relu(self.w_1(x))))

8. Embedding和Softmax

    使用预学习的Embedding将输入Token序列和输出Token序列转化为d_{model}维向量。使用常用的预训练的线性变换和Softmax函数将解码器输出转换为预测下一个Token的概率。在我们的模型中,我们在两个Embedding层和Pre-softmax线性变换之间共享相同的权重矩阵。在Embedding层中,我们将这些权重乘以\sqrt{d_{model}}

class Embeddings(nn.Module):
    def __init__(self, d_model, vocab):
        super(Embeddings, self).__init__()
        self.lut = nn.Embedding(vocab, d_model)
        self.d_model = d_model

    def forward(self, x):
        return self.lut(x) * math.sqrt(self.d_model)

9. 位置编码

    由于本模型不包含递归和卷积结构,为了使模型能够有效利用序列的顺序特征,我们需要加入序列中各个Token间相对位置或Token在序列中绝对位置的信息。在这里,我们将位置编码添加到编码器和解码器栈底部的输入Embedding。由于位置编码与Embedding具有相同的维度dmodeldmodel,因此两者可以直接相加。使用不同频率的正弦和余弦函数:

Transformer:Pytorch版本的源码解析_第5张图片

    其中pos是位置,i是维度。 也就是说,位置编码的每个维度都对应于一个正弦曲线,其波长形成从2\pi10000\cdot 2\pi的等比级数。我们之所以选择了这个函数,是因为我们假设它能让模型很容易学会Attend相对位置,因为对于任何固定的偏移量kPE_{pos+k}可以表示为PE_{pos}的线性函数。

    此外,在编码器和解码器堆栈中,我们在Embedding与位置编码的加和上都使用了Dropout机制。在基本模型上,我们使用P_{drop}=0.1的比率。

class PositionalEncoding(nn.Module):
    "Implement the PE function."
    def __init__(self, d_model, dropout, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) *
                             -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)
        
    def forward(self, x):
        x = x + Variable(self.pe[:, :x.size(1)], 
                         requires_grad=False)
        return self.dropout(x)

    下图所示,位置编码将根据位置添加正弦曲线。曲线的频率和偏移对于每个维度是不同的。

plt.figure(figsize=(15, 5))
pe = PositionalEncoding(20, 0)
y = pe.forward(Variable(torch.zeros(1, 100, 20)))
plt.plot(np.arange(100), y[0, :, 4:8].data.numpy())
plt.legend(["dim %d"%p for p in [4,5,6,7]])
None

Transformer:Pytorch版本的源码解析_第6张图片

    我们也尝试了使用预学习的位置Embedding,但是发现这两个版本的结果基本是一样的。我们选择了使用正弦曲线版本的实现,因为使用此版本能让模型能够处理大于训练语料中最大序列长度的序列。

10. 完整模型

连接完整模型并设置超参的函数如下:

def make_model(src_vocab, tgt_vocab, N=6, 
               d_model=512, d_ff=2048, h=8, dropout=0.1):
    "Helper: Construct a model from hyperparameters."
    c = copy.deepcopy
    attn = MultiHeadedAttention(h, d_model)
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)
    position = PositionalEncoding(d_model, dropout)
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
        Generator(d_model, tgt_vocab))
    
    # This was important from their code. 
    # Initialize parameters with Glorot / fan_avg.
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model

# Small example model.
tmp_model = make_model(10, 10, 2)
None

11. 模型训练

Batches and Masking:

class Batch:
    "Object for holding a batch of data with mask during training."
    def __init__(self, src, trg=None, pad=0):
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            self.trg = trg[:, :-1]
            self.trg_y = trg[:, 1:]
            self.trg_mask = \
                self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
    
    @staticmethod
    def make_std_mask(tgt, pad):
        "Create a mask to hide padding and future words."
        tgt_mask = (tgt != pad).unsqueeze(-2)
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
        return tgt_mask

Training Loop:

def run_epoch(data_iter, model, loss_compute):
    "Standard Training and Logging Function"
    start = time.time()
    total_tokens = 0
    total_loss = 0
    tokens = 0
    for i, batch in enumerate(data_iter):
        out = model.forward(batch.src, batch.trg, 
                            batch.src_mask, batch.trg_mask)
        loss = loss_compute(out, batch.trg_y, batch.ntokens)
        total_loss += loss
        total_tokens += batch.ntokens
        tokens += batch.ntokens
        if i % 50 == 1:
            elapsed = time.time() - start
            print("Epoch Step: %d Loss: %f Tokens per Sec: %f" %
                    (i, loss / batch.ntokens, tokens / elapsed))
            start = time.time()
            tokens = 0
    return total_loss / total_tokens

批处理:使用torch text来创建批次,我们在torchtext的一个函数中创建批次,确保填充到最大批训练长度的大小不超过阈值

global max_src_in_batch, max_tgt_in_batch
def batch_size_fn(new, count, sofar):
    "Keep augmenting batch and calculate total number of tokens + padding."
    global max_src_in_batch, max_tgt_in_batch
    if count == 1:
        max_src_in_batch = 0
        max_tgt_in_batch = 0
    max_src_in_batch = max(max_src_in_batch,  len(new.src))
    max_tgt_in_batch = max(max_tgt_in_batch,  len(new.trg) + 2)
    src_elements = count * max_src_in_batch
    tgt_elements = count * max_tgt_in_batch
    return max(src_elements, tgt_elements)

Optimizer:

优化器选择Adam,

学习率,在预热中随步数线性地增加学习速率,并且此后与步数的反平方根成比例地减小它。设置预热步数为4000。

class NoamOpt:
    "Optim wrapper that implements rate."
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
        
    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None):
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))
        
def get_std_opt(model):
    return NoamOpt(model.src_embed[0].d_model, 2, 4000,
            torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))

不同模型大小和优化超参数的此模型曲线的示例如下:

# Three settings of the lrate hyperparameters.
opts = [NoamOpt(512, 1, 4000, None), 
        NoamOpt(512, 1, 8000, None),
        NoamOpt(256, 1, 4000, None)]
plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)])
plt.legend(["512:4000", "512:8000", "256:4000"])
None

Transformer:Pytorch版本的源码解析_第7张图片

正则化

Label Smoothing:

在训练期间,我们采用了值的标签平滑。 这种做法提高了困惑度,因为模型变得更加不确定,但提高了准确性和BLEU分数。我们使用KL div loss实现标签平滑。 相比使用独热目标分布,我们创建一个分布,其包含正确单词的置信度和整个词汇表中分布的其余平滑项。

class LabelSmoothing(nn.Module):
    "Implement label smoothing."
    def __init__(self, size, padding_idx, smoothing=0.0):
        super(LabelSmoothing, self).__init__()
        self.criterion = nn.KLDivLoss(size_average=False)
        self.padding_idx = padding_idx
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.size = size
        self.true_dist = None
        
    def forward(self, x, target):
        assert x.size(1) == self.size
        true_dist = x.data.clone()
        true_dist.fill_(self.smoothing / (self.size - 2))
        true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
        true_dist[:, self.padding_idx] = 0
        mask = torch.nonzero(target.data == self.padding_idx)
        if mask.dim() > 0:
            true_dist.index_fill_(0, mask.squeeze(), 0.0)
        self.true_dist = true_dist
        return self.criterion(x, Variable(true_dist, requires_grad=False))

如下示例,说明如何根据置信度将质量分配给单词:

# Example of label smoothing.
crit = LabelSmoothing(5, 0, 0.4)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
                             [0, 0.2, 0.7, 0.1, 0], 
                             [0, 0.2, 0.7, 0.1, 0]])
v = crit(Variable(predict.log()), 
         Variable(torch.LongTensor([2, 1, 0])))

# Show the target distributions expected by the system.
plt.imshow(crit.true_dist)
None

Transformer:Pytorch版本的源码解析_第8张图片

如果标签平滑化对于给定的选择非常有信心,则标签平滑实际上开始对模型进行惩罚。

crit = LabelSmoothing(5, 0, 0.1)
def loss(x):
    d = x + 3 * 1
    predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d],
                                 ])
    #print(predict)
    return crit(Variable(predict.log()),
                 Variable(torch.LongTensor([1]))).data[0]
plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)])
None

Transformer:Pytorch版本的源码解析_第9张图片

Multi-GPU Training:

  • replicate - 复制 - 将模块拆分到不同的GPU上
  • scatter - 分散 - 将批次拆分到不同的GPU上
  • parallel_apply - 并行应用 - 在不同GPU上将模块应用于批处理
  • gather - 聚集 - 将分散的数据聚集到一个GPU上
  • nn.DataParallel - 一个特殊的模块包装器,在评估之前调用它们
# Skip if not interested in multigpu.
class MultiGPULossCompute:
    "A multi-gpu loss compute and train function."
    def __init__(self, generator, criterion, devices, opt=None, chunk_size=5):
        # Send out to different gpus.
        self.generator = generator
        self.criterion = nn.parallel.replicate(criterion, 
                                               devices=devices)
        self.opt = opt
        self.devices = devices
        self.chunk_size = chunk_size
        
    def __call__(self, out, targets, normalize):
        total = 0.0
        generator = nn.parallel.replicate(self.generator, 
                                                devices=self.devices)
        out_scatter = nn.parallel.scatter(out, 
                                          target_gpus=self.devices)
        out_grad = [[] for _ in out_scatter]
        targets = nn.parallel.scatter(targets, 
                                      target_gpus=self.devices)

        # Divide generating into chunks.
        chunk_size = self.chunk_size
        for i in range(0, out_scatter[0].size(1), chunk_size):
            # Predict distributions
            out_column = [[Variable(o[:, i:i+chunk_size].data, 
                                    requires_grad=self.opt is not None)] 
                           for o in out_scatter]
            gen = nn.parallel.parallel_apply(generator, out_column)

            # Compute loss. 
            y = [(g.contiguous().view(-1, g.size(-1)), 
                  t[:, i:i+chunk_size].contiguous().view(-1)) 
                 for g, t in zip(gen, targets)]
            loss = nn.parallel.parallel_apply(self.criterion, y)

            # Sum and normalize loss
            l = nn.parallel.gather(loss, 
                                   target_device=self.devices[0])
            l = l.sum()[0] / normalize
            total += l.data[0]

            # Backprop loss to output of transformer
            if self.opt is not None:
                l.backward()
                for j, l in enumerate(loss):
                    out_grad[j].append(out_column[j][0].grad.data.clone())

        # Backprop all loss through transformer.            
        if self.opt is not None:
            out_grad = [Variable(torch.cat(og, dim=1)) for og in out_grad]
            o1 = out
            o2 = nn.parallel.gather(out_grad, 
                                    target_device=self.devices[0])
            o1.backward(gradient=o2)
            self.opt.step()
            self.opt.optimizer.zero_grad()
        return total * normalize

Shared Embeddings 共享嵌入:在源/目标/生成器之间共享相同的权重向量

if False:
    model.src_embed[0].lut.weight = model.tgt_embeddings[0].lut.weight
    model.generator.lut.weight = model.tgt_embed[0].lut.weight

Model Averaging 模型平均:这篇文章平均最后k个checkpoints,以创建一个ensembling effect

def average(model, models):
    "Average models into model"
    for ps in zip(*[m.params() for m in [model] + models]):
        p[0].copy_(torch.sum(*ps[1:]) / len(ps[1:]))

Attention Visualization

每一层注意力可视化观测:

tgt_sent = trans.split()
def draw(data, x, y, ax):
    seaborn.heatmap(data, 
                    xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0, 
                    cbar=False, ax=ax)
    
for layer in range(1, 6, 2):
    fig, axs = plt.subplots(1,4, figsize=(20, 10))
    print("Encoder Layer", layer+1)
    for h in range(4):
        draw(model.encoder.layers[layer].self_attn.attn[0, h].data, 
            sent, sent if h ==0 else [], ax=axs[h])
    plt.show()
    
for layer in range(1, 6, 2):
    fig, axs = plt.subplots(1,4, figsize=(20, 10))
    print("Decoder Self Layer", layer+1)
    for h in range(4):
        draw(model.decoder.layers[layer].self_attn.attn[0, h].data[:len(tgt_sent), :len(tgt_sent)], 
            tgt_sent, tgt_sent if h ==0 else [], ax=axs[h])
    plt.show()
    print("Decoder Src Layer", layer+1)
    fig, axs = plt.subplots(1,4, figsize=(20, 10))
    for h in range(4):
        draw(model.decoder.layers[layer].self_attn.attn[0, h].data[:len(tgt_sent), :len(sent)], 
            sent, tgt_sent if h ==0 else [], ax=axs[h])
    plt.show()

参考资料:

http://nlp.seas.harvard.edu/2018/04/03/attention.html

https://www.cnblogs.com/guoyaohua/p/transformer.html

你可能感兴趣的:(深度学习,NLP,Pytorch)