HDU 2709 Sumsets(递推)

Sumsets

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1030    Accepted Submission(s): 406


Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
 

 

Input
A single line with a single integer, N.
 

 

Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
 

 

Sample Input
7
 

 

Sample Output
6
 

 

Source
 

 

Recommend
teddy

 

 

 

设a[n]为和为 n 的种类数;

根据题目可知,加数为2的N次方,即 n 为奇数时等于它前一个数 n-1 的种类数 a[n-1] ,若 n 为偶数时分加数中有无 1 讨论,即关键是对 n 为偶数时进行讨论:

1.n为奇数,a[n]=a[n-1]

2.n为偶数:

(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2];

(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n-2];

所以总的种类数为:a[n]=a[n-2]+a[n/2];

 

//============================================================================

// Name        : HDU2709.cpp

// Author      : 

// Version     :

// Copyright   : Your copyright notice

// Description : Hello World in C++, Ansi-style

//============================================================================

/*

 * 设a[n]为和为 n 的种类数;



根据题目可知,加数为2的N次方,即 n 为奇数时等于它前一个数 n-1 的种类数 a[n-1] ,若 n 为偶数时分加数中有无 1 讨论,即关键是对 n 为偶数时进行讨论:



1.n为奇数,a[n]=a[n-1]



2.n为偶数:



(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2];



(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n-2];



所以总的种类数为:a[n]=a[n-2]+a[n/2];

 */





#include <iostream>

#include <string.h>

#include <algorithm>

#include <stdio.h>

using namespace std;

const int MAXN=1000010;

const int MOD=1000000000;

int a[MAXN];

void init()

{

    a[0]=a[1]=1;

    for(int i=2;i<MAXN;i++)

    {

        if(i%2)a[i]=a[i-1];

        else

        {

            a[i]=a[i-2]+a[i/2];

            a[i]%=MOD;

        }

    }

}

int main()

{

    //freopen("in.txt","r",stdin);

    //freopen("out.txt","w",stdout);

    init();

    int n;

    while(scanf("%d",&n)==1)

    {

        printf("%d\n",a[n]);

    }

    return 0;

}

 

你可能感兴趣的:(set)