- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- 论文阅读:《针对多目标优化和应用的 NSGA-II 综述》一些关于优化算法的简介
行然梦实
优化算法论文阅读算法数学建模
前言提醒:文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。内容由AI辅助生成,仅经笔者审核整理,请甄别食用。文章目录前言一些关于优化算法的缩写优化算法Ma,Haiping&Zhang,Yajing&Sun,Shengyi&Liu,Ting&S
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- 视觉Transformer还有哪些点可以研究?怎么应用?
计算机视觉工坊
3D视觉从入门到精通学习算法开源
0.这篇文章干了啥?今天笔者为大家推荐一篇最新的综述,详细总结了Transformer的网络架构、优化策略、发展方向,还会定期更新Github,研究注意力机制的小伙伴一定不要错过。注意机制有助于人类视觉系统有效地分析和理解复杂场景,它能够聚焦于图像的关键区域,同时忽略无关紧要的部分。受此概念启发,注意机制已经被引入到计算机视觉(CV)中,以动态地为图像中的不同区域分配权重。这使得神经网络能够专注于
- 5个必知的AIGC工具,轻松打造爆款虚拟偶像
AI原生应用开发
AI原生应用开发实战AIGCai
5个必知的AIGC工具,轻松打造爆款虚拟偶像关键词:AIGC工具、虚拟偶像、AI生成内容、数字人建模、智能交互、语音合成、动画生成摘要:本文深度解析5款前沿AIGC工具在虚拟偶像打造中的核心应用,涵盖从形象设计、语音生成到动态交互的全流程技术实现。通过MidJourney、D-ID、MetaHuman、RunwayML、VoiceMaker等工具的原理剖析、操作指南及实战案例,揭示如何利用AI技术
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- Claude 4 全新上线,科研和写作能力大幅提升!文献检索和综述更容易,实测好用!(附专业提示词)
智写AI
AI学术写作指南人工智能
在2025年5月22日,Claude正式发布了它的4系列模型:Opus4和Sonnet4七哥总结下这两款模型的特点,Sonnet4适合快速响应的任务,Opus4适合需要推理的复杂多步骤任务。两款模型都有20万token的上下文窗口。对科研人员、程序开发者来说,Claude这一代模型不仅性能强悍,还在多项核心能力上实现了突破式进阶。说说最新亮相的Claude4系列模型在多项核心能力上的三大进阶之处:
- 「数据采集与网络爬虫(使用Python工具)」【数据分析全栈攻略:爬虫+处理+可视化+报告】
-第103篇-Date:2025-06-01Author:郑龙浩/仟墨文章目录「据采集与网络爬虫」【使用工具:Python】一数据采集1数据采集综述(1)基本介绍(2)数据目标源(3)采集方式(4)数据形式2互联网数据采集(重点)(1)什么是网络爬虫?(2)常见的网络爬虫和爬虫采集器(3)爬虫的流程(4)反爬虫技术3数据采集基本流程二HTTP请求和响应(1)HTTP(HypertextTransf
- 浅谈生成式AI语言模型的现状与展望
摘要生成式人工智能语言模型作为当前人工智能领域最具突破性的技术之一,正在深刻改变着自然语言处理的技术范式和应用格局。本文从学术文献综述的角度,系统梳理了从Transformer架构到大语言模型的技术演进历程,深入分析了当前生成式AI语言模型的核心技术特征、应用现状以及面临的主要挑战,并展望了未来发展趋势。研究表明,生成式AI语言模型在参数规模扩展、多模态融合、推理能力提升等方面取得了显著进展,但仍
- 【深化复盘】英语学习活动观内涵和有效教学框架解读
心阳心语
现在还依稀记得9月中旬自己作为一名新进学员小白满怀忐忑守候在电脑旁,参与聆听主题大课第一讲时的情形。由于自己2022版课标还没有进行系统的研读,只是停留在浅层的略有所知阶段,因此,对于课程第一讲的讲授内容,心中只是觉得高大上,自己则是囫囵吞枣式的牵强理解。在跟着课程组进行两版课标的啃读与系统学习小半年后,现在再次阅读彭文娟老师归纳整理提炼而撰写的课程综述。感觉综述中的主要内容及文字灵动可见,不再陌
- python实现百炼平台tts语音合成接入
️DashScope语音合成(TTS)从入门到实践教程本教程将带你快速掌握如何使用DashScope的SpeechSynthesizer类实现语音合成,涵盖三种调用方式(同步、异步、流式),附带完整代码示例和关键注意事项。一、前置准备1.安装依赖确保已安装Python3.7+,并通过pip安装DashScopeSDK:pipinstalldashscope若需流式调用实时播放音频(如示例中的pya
- 温湿度传感器AHT25
温湿度传感器•完全标定•数字输出,I2C接口•优异的长期稳定性•响应迅速、抗干扰能力强•宽电压支持2.2-5.5VDC产品综述AHT25温湿度传感器配有一个全新设计的ASIC专用芯片、经过改进的MEMS半导体电容式湿度传感元件和一个标准的温度传感元件,其性能达到行业先进水平。经过改进的新一代温湿度传感器AHT25在恶劣环境下的性能更稳定,并且还能在较大的测量范围内保持良好的精度。AHT25使用了标
- 【论文蒸馏】Recent Advances in Speech Language Models: A Survey
Greener_Pat
论文蒸馏语言模型人工智能AudioLM
AbstractLLM蓬勃发展,但从交互的自然性上看语音大模型(SpeechLM)有巨大的发展空间。直接的方法是ASR(语音转文字)+LLM+TTS(文字转语音),但是这样有其固有的限制,而端到端的SpeechLM表现更好,本文及其方法论做了一个概览的综述1.Introduction大语言模型提供了强大的AI基础支架,在其它领域有着广泛应用。但交互上不自然,所以需要声学大模型。一种直接的实现方式是
- 具身智能的视觉-语言导航综述
24年2月来自曲阜师范、华东师大和哈工大的论文“Vision-LanguageNavigationwithEmbodiedIntelligence:ASurvey”。作为人工智能领域的长期愿景,具身智能的核心目标是提升智体与环境的感知、理解和交互能力。视觉-语言导航(VLN)作为实现具身智能的重要研究路径,致力于探索智体如何利用自然语言与人进行有效沟通,接收并理解指令,并最终依靠视觉信息实现精准导
- 基于小样本学习的图像分类综述
cdyyyyyyy
学习分类机器学习
目录引言基本概念小样本学习方法分类1、数据增强2、迁移学习3、元学习小样本学习主流方法1、基于度量的小样本学习2、基于Pretraining+FineTuning的方法3、基于元学习的小样本学习总结引言因为课程设计要求,所以进行了关于小样本学习的调研。目前小样本学习还是一个比较热门的研究,很多关于小样本学习的论文也陆续发表。本文只是一个概述,具体方法研究还有待深入。基本概念小样本学习(FSL:Fe
- 迈向大型推理模型:基于大型语言模型的强化推理综述(附教程)
LLM大模型
人工智能自然语言处理知识库本地化部署吴恩达大模型RAG
语言长期以来被认为是人类推理的基本工具。大型语言模型(LLM)的突破激发了大量研究兴趣,推动了利用这些模型解决复杂推理任务的探索。研究人员通过引入“思维”这一概念——即一系列代表推理过程中的中间步骤的标记——超越了简单的自回归标记生成。这一创新范式使LLMs能够模仿复杂的人类推理过程,如树搜索和反思性思维。近年来,学习推理的趋势逐渐兴起,强化学习(RL)被应用于训练LLMs掌握推理过程。这种方法通
- VUE如何设置语音
穆罕周
vue.js前端javascript
在Vue项目中设置语音功能可以通过1、使用WebSpeechAPI和2、集成第三方语音合成库来实现。WebSpeechAPI是一种浏览器内置的API,它提供了语音识别和语音合成功能,而第三方语音合成库则提供了更加丰富和灵活的功能。一、使用WebSpeechAPIWebSpeechAPI是一种原生浏览器API,它包括了语音识别和语音合成两部分。以下是如何在Vue项目中使用WebSpeechAPI设置
- 从文本到语音:使用 ElevenLabs 和 FFmpeg 实现语音合成与播放
曦紫沐
语音模型ffmpegElevenLabs语音合成
摘要在当今的人工智能时代,语音合成技术正变得越来越普及。ElevenLabs是一个强大的语音合成平台,能够生成高质量的语音音频。本文将详细介绍如何结合Python、ElevenLabsAPI和FFmpeg工具集,实现从文本到语音的转换,并通过ffplay播放生成的音频文件。同时,我们将解决常见的问题,如ffplay未找到或音频无法播放等。1.引言随着人工智能技术的发展,语音合成(Text-to-S
- 【慢工社—学术篇】如何使用 ChatGPT 撰写文献综述(二)
取不好名字=
慢工社-学术篇chatgpt学习方法程序人生人工智能AI写作
慢工社的来历:有没有发现,现在我们像在给AI打工?我们为AI提供基础信息,各种材料,期盼着AI能给我们一些有效的内容作为“薪水”。在这样的付出收获视角下,俗语“慢工才能出细活”简直形容的不能再贴切了。如何使用ChatGPT撰写文献综述?(二)在第一篇内容中,我们介绍了G老师在学术写作上的主要局限以及一些在G老师帮助下写综述的主要过程,最后附上了一些认为会常用到的“咒语”。【慢工社—学术篇】如何使用
- GPT-4o mini TTS:领先的文本转语音技术
桂花饼
AIGCGPT-4oo4-mini语音识别人工智能GPT-4o
什么是GPT-4ominiTTS?GPT-4ominiTTS是OpenAI推出的全新一代文本转语音(TTS)技术,能够以自然、流畅的方式将普通文本转换为语音。依托先进的神经网络架构,GPT-4ominiTTS在语音合成中避免了传统TTS的生硬与机械感,能够生成富有情感和个性化表达的高质量语音。该技术支持多语言与多口音,是视频、播客、电子学习等场景的理想选择。核心特点自然流畅,接近真人GPT-4om
- NUS:LLM表格数据建模综述
标题:LanguageModelingonTabularData:ASurveyofFoundations,TechniquesandEvolution来源:arXiv,2408.10548摘要表格数据是一种跨领域的流行数据类型,由于其异构性和复杂的结构关系,带来了独特的挑战。在表格数据分析中实现高预测性能和鲁棒性对许多应用程序具有重大前景。受自然语言处理,特别是转换器架构的最新进展的影响,出现了
- 基于pyQt5为前端实现的智能座椅控制系统,集成了人脸识别、语音合成和座椅记忆功能,为用户提供个性化的座椅调节体验,后期可连接智能座椅。
渴死的鱼仔
qt前端开发语言
智能座椅控制系统:基于PyQt5的个性化解决方案界面描述:一、系统概述基于PyQt5开发的智能座椅控制系统,深度融合人脸识别、语音交互与座椅记忆功能,打造个性化舒适体验。系统通过实时用户识别自动调节座椅参数,后期可无缝对接智能座椅硬件,实现"无感式"智能生活场景。二、核心功能模块1.人脸识别引擎高精度识别:基于Dlib库实现亚毫米级人脸特征提取动态管理:支持多人脸特征存储与实时匹配快速响应:毫秒级
- AI数字人系统开发上线全攻略:从0到1全流程解析
v_qutudy
人工智能AI系统开发AI数字人开发
一、需求分析:定义数字人核心能力1.1功能规划矩阵模块基础功能进阶功能形象生成2D/3D建模实时表情捕捉与驱动语音交互TTS语音合成情感识别与应激反应动作系统预设动作库骨骼动画与物理引擎智能决策规则引擎强化学习驱动决策多模态交互文本/语音输入AR/VR空间交互1.2非功能性指标实时性:唇形同步延迟B[语音识别]A-->C[姿态检测]A-->D[文本理解]B-->E[NLP引擎]C-->F[动作解析
- 微软语音合成标记语言SSML文档结构和事件(详细文档和实例)
阿酷tony
AI数字人微信语音合成microsoft微软语音SSML文档结构SSML结构SSML语音合成
说明:MicrosoftAzure中国技术文档网站,请访问https://docs.azure.cn包含输入文本的语音合成标记语言(SSML)确定了文本转语音输出的结构、内容和其他特征。例如,可以使用SSML来定义段落、句子、中断/暂停或静音。可以使用事件标记(例如书签或视素)来包装文本,这些标记可以稍后由应用程序处理。有关如何在SSML文档中构建元素的详细信息,请参阅以下部分。备注某些语音不支持
- 基于 esp32-s3,结合私有化大模型,集asr语音识别、llm大模型、tts语音合成,设计一个技术方案,要求用websocket保持长链接,
以下方案演示了如何基于ESP32-S3,通过私有化大模型组合ASR(语音识别)、LLM(语言大模型)和TTS(语音合成)来构建一个语音交互系统,并且通过WebSocket保持与服务器的长连接通讯。整体方案分为以下几个部分:系统整体架构与数据流协议设计与消息格式服务器端实现示例ESP32-S3端实现示例运行流程与示例下面将对各部分进行详细说明。ESP32-S3没想到私有化大模型速度也能这么快ESP3
- 深度学习交互式图像分割技术演进与突破
wang1776866571
深度学习交互式分割深度学习人工智能交互式分割
说明本文为作者读研期间基于交互式图像分割领域公开文献的系统梳理与个人理解总结,所有内容均为原创撰写(ai辅助创作),未直接复制或抄袭他人成果。文中涉及的算法、模型及实验结论均参考自领域内公开发表的学术论文(具体文献见文末参考文献列表)。本文旨在为交互式图像分割领域的学习者提供一份结构化的综述参考,内容涵盖技术演进、核心方法、关键技术优化及应用前景,希望能为相关研究提供启发。摘要:本文系统综述了基于
- 机器学习算法:核心原理与前沿发展综述
fmvrj34202
机器学习算法人工智能
机器学习算法作为人工智能的核心驱动力,正在重塑我们解决问题的范式。本文将系统性地探讨机器学习算法的分类体系、数学基础、优化方法以及最新发展趋势,为从业者提供技术参考。一、算法分类体系根据学习范式,机器学习算法可分为三大类:监督学习:基于标注数据的建模方法线性回归:最小化平方误差的闭式解θ=(XᵀX)⁻¹Xᵀy支持向量机:通过核技巧实现非线性分类,优化目标为max(0,1-yᵢ(w·xᵢ+b))决策
- ER综述论文阅读-Emotion recognition in EEG signals using deep learning methods: A review
今天早睡了
情绪识别EmotionRecognition论文阅读深度学习人工智能
EmotionrecognitioninEEGsignalsusingdeeplearningmethods:AreviewQ1期刊,2023论文链接:https://d1wqtxts1xzle7.cloudfront.net/105887899/emotionreview-libre.pdf?1695460941=&response-content-disposition=inline%3B+f
- 大型语言模型中的提示工程系统综述:技术与应用
AI专题精讲
Paper阅读语言模型人工智能自然语言处理
摘要提示工程已成为扩展大型语言模型(LLMs)和视觉语言模型(VLMs)能力的不可或缺的技术。这种方法利用任务特定的指令(称为prompt),在不修改核心模型参数的情况下增强模型效能。与更新模型参数不同,prompt仅通过给定指令即可引出所需的模型行为,从而实现预训练模型在下游任务中的无缝集成。prompt可以是提供上下文以引导模型的自然语言指令,也可以是激活相关知识的学习向量表示。这一新兴领域已
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那