- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- Milvus 实战全流程
学习路径总览1.Milvus基础知识什么是向量数据库?Milvus的核心概念(collection、field、index、partition、segment)Milvus和Faiss、Annoy、HNSW的区别2.安装与部署Docker快速部署Milvus(推荐)本地开发环境安装使用MilvusLite本地测试3.数据建模与管理创建Collection与Schema定义(包含向量字段和元数据字段
- 5G 承载网中的数学函数
机理分析法,从流量控制、稳定性保障、资源优化和跨层协同四个维度,系统解析5G承载网络中数学函数的作用机制,揭示其如何通过数学建模实现网络性能的动态平衡与优化。一、流量控制函数:网络流建模与路径优化1.组网拓扑与流量函数5G承载网的组网模式(环形、环带链、双归)直接影响流量分布,其数学表征如下:环形组网流量函数:Bi(t)=NB⋅η(t)+ΔBstat(t)B:环网总带宽;N:节点数;η(t)
- 【2024国赛C题】2024 年全国大学生数学建模比赛思路、代码更新中.....
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛一、解题思路二、准备建议三、注意事项1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛C题及资源下载4思路、代码分享......⛳️竞赛事件及参赛一、解题思路理解题目背景和要求:仔细阅读题目,理解问题的背景、目的和具体要求。识别问题的关键要素
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- SQL Developer Data Modeler:一款免费跨平台的数据库建模工具
不剪发的Tony老师
数据库数据库设计ERD
SQLDeveloperDataModeler是由Oracle公司开发的一款免费的图形化数据建模和数据库设计工具,用于创建、浏览和编辑逻辑模型、关系模型、物理模型、多维模型和数据类型模型。SQLDeveloperDataModeler既是一个独立的应用程序,同时也被集成到了OracleSQLDeveloper开发工具中。功能特性SQLDeveloperDataModeler工具提供的主要功能如下:
- 【2024国赛D题】2024 年全国大学生数学建模比赛思路、代码更新中.....
长安程序猿
matlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛一、解题思路二、准备建议三、注意事项1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛D题及资源下载4思路、代码分享......⛳️竞赛事件及参赛竞赛开始时间:北京时间2024年9月5日18:00竞赛结束时间:北京时间2024年9月8日20:
- TDengine初体验
磨刀匠
数据库TDenginetaos涛思物联网数据库iot数据库
TDengine初体验快速上手指南:https://www.taosdata.com/cn/getting-started/TDengine是什么?TDengine是一个高效的存储、查询、分析时序大数据的平台,专为物联网、车联网、工业互联网、运维监测等优化而设计。您可以像使用关系型数据库MySQL一样来使用它,但建议您在使用前仔细阅读一遍下面的文档,特别是数据模型与数据建模一节。centos7安装
- 低代码中的统计模型是什么?有什么作用?
启效云
低代码
低代码开发平台中的统计模型是指通过可视化配置、拖拽操作或少量代码即可应用的数据分析工具,旨在帮助技术人员及非技术人员快速实现数据描述、趋势预测和业务决策。其核心价值在于降低数据分析门槛,使业务人员无需深入掌握统计原理或编程技能,即可通过图形化界面完成数据建模、分析与可视化。统计模型的技术形态与集成方式预置模板与可视化组件主流低代码平台(如启效云、腾讯云微搭等)提供开箱即用的统计模板,涵盖描述性统计
- 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题(完整建模过程附python代码)
空脑小白
数学建模数学建模
问题一:数据预处理与基础统计分析(以stroke.csv为例)一、建模目标对stroke.csv数据进行预处理、特征统计和可视化分析;找出影响中风的关键因素,为后续建模提供数据依据。二、建模过程(1)数据理解stroke.csv包含如下字段(常见字段如下,实际以文件为准):gender:性别age:年龄hypertension:是否患高血压(0:否,1:是)heart_disease:是否患心脏病
- 2025超详细的数学建模入门速成指南
2025数学建模入门速成指南(自用版)作为曾获国赛和华为杯双国一的选手,我认为数学建模入门关键在于掌握基础模型(优化、预测、评价)、数据处理思维(清洗、分析、可视化)以及有效的团队协作模式。这篇笔记结合我的自身经历,分享从【零基础到竞赛获奖】的准备思路。01整体规划1.数模入门数学建模竞赛考察我们解决实际问题的综合能力。在备赛初期首先建立以下认知基础:(1)竞赛特点:命题趋势:近年赛题倾向于跨学科
- AtCoder Beginner Contest 414(ABCD)
前言被数学建模分散精力后明显感觉状态不如月初了,这俩赛道看来只能选一个走。TT一、A-StreamerTakahashi#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(){intn,l,r;cin>>n>>l>>r;intcnt=0;for(inti=0,x,y;i>x>>y;if(x=r){cnt++;}}
- 【人工智能之深度学习】1. 深度学习基石:神经元模型与感知机的数学本质(附代码实现与收敛性证明)
AI_DL_CODE
人工智能之深度学习人工智能深度学习神经元模型感知机赫布法则深度学习基础线性可分
摘要:作为深度学习的基础单元,神经元模型与感知机承载着从生物智能到人工神经网络的桥梁作用。本文从生物神经元的工作机制出发,系统剖析数学建模过程:详解赫布法则的权重更新原理(Δwi=η·xi·y),推导McCulloch-Pitts神经元模型的数学表达(y=Θ(∑wixi−b)),重点证明感知机在linear可分情况下的收敛性——通过Novikoff定理严格推导迭代次数上界,揭示间隔γ对收敛速度的影
- 第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)
格图素书
大数据竞赛赛题解析数学建模
目录5.3.3问题三的总结5.4问题四的模型建立与求解5.4.1问题分析5.4.2计算方位角和航向角5.4.3计算距离D和水平速度5.4.4分析并建立模型5.4.4.1聚类分析方法的提出5.4.4.2模型的建立5.4.5问题四的总结5.5问题五的模型建立与求解5.5.1问题五的分析5.5.2传统的战争评估模型5.5.2.1正规作战模型5.5.2.2游击作战模型5.5.2.3混合作战模型5.5.3信
- 打造智能资讯引擎:基于 Python 的新闻数据爬取与个性化推荐系统实战全流程解析
程序员威哥
最新爬虫实战项目python开发语言
前言:数据时代的信息洪流,如何做到“千人千面”?在信息爆炸的时代,每天都有成千上万条新闻资讯涌现。如何从海量内容中挖掘出用户感兴趣的资讯?这不仅仅是爬虫技术的问题,更是数据建模与智能推荐算法的落地挑战。本篇文章将带你从零出发,构建一个具有实际应用价值的“个性化新闻阅读推荐系统”,从数据采集(爬虫)、文本处理(NLP)、兴趣建模(TF-IDF/协同过滤/Embedding)到推荐展示,覆盖整个推荐系
- 数据并表技术全面指南:从基础JOIN到分布式数据融合
熊猫钓鱼>_>
分布式
引言在现代数据处理和分析领域,数据并表(TableJoin)技术是连接不同数据源、整合分散信息的核心技术。随着企业数据规模的爆炸式增长和数据源的日益多样化,传统的数据并表方法面临着前所未有的挑战:性能瓶颈、内存限制、数据倾斜、一致性问题等。如何高效、准确地进行大规模数据并表,已成为数据工程师和架构师必须掌握的关键技能。数据并表不仅仅是简单的SQLJOIN操作,它涉及数据建模、算法优化、分布式计算、
- 【Pandas超实用经验汇总-数据建模分析】
Mr.小海
Python数据挖掘数据分析python
Pandas超实用经验汇总-数据分析前言基本方法1.读取文件2.查看数据3.修改、删除、替换数据等总结前言看见了很多教程虽然很全,但是很多技巧容易忘记且几乎用不上,读起来晦涩难懂,今天我给大家总结了Pandas的一些学习经验技巧,包含常见日常使用的pandas知识,以及一些技巧,这些技巧常见于数学建模,数据分析,数据挖掘比赛等。基本方法1.读取文件方法如下:importpandasaspd#正常写
- 面向向量检索的教育QA建模:九段日本文化研究所日本语学院的Prompt策略分析(6 / 500)
semantist@语校
语言学校Prompt模板集人工智能prompt数据集ai百度支持向量机开源
面向向量检索的教育QA建模:九段日本文化研究所日本语学院的Prompt策略分析(6/500)系列说明500所日本语言学校结构化建模实战,第6篇。每篇拆解1所学校在Prompt-QA系统中的建模策略,分享工程经验,本项目持续在HuggingFace上同步更新,欢迎AI工程师们关注。一.案例选择:为什么是九段日本语学院?在以中国学生为中心设计的语言学校数据建模中,我们往往默认为目标用户熟悉中文、学习节
- NUS:LLM表格数据建模综述
标题:LanguageModelingonTabularData:ASurveyofFoundations,TechniquesandEvolution来源:arXiv,2408.10548摘要表格数据是一种跨领域的流行数据类型,由于其异构性和复杂的结构关系,带来了独特的挑战。在表格数据分析中实现高预测性能和鲁棒性对许多应用程序具有重大前景。受自然语言处理,特别是转换器架构的最新进展的影响,出现了
- 【2024国赛C题】【农作物的种植策略】2024 年全国大学生数学建模比赛思路、代码更新中.....
程序猿鑫
数学建模
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛C题及资源下载4思路、代码分享......⛳️竞赛事件及参赛根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济的可持续发展具有重要的现实意义。选择适宜的农作物,
- 盲超分的核心概念
小冷爱读书
数学建模盲超分超分重建
一、盲超分的本质与数学建模1.退化过程的数学表达低分辨率图像(LR)可看作高分辨率图像(HR)经过退化模型后的结果::观测到的低分辨率图像:待恢复的高分辨率图像:模糊核(BlurKernel)⊗:卷积操作↓:下采样(步长为):加性噪声(如高斯噪声、泊松噪声等)盲超分的核心问题:在未知、、的情况下,从估计。2.为什么传统超分方法会失效?传统方法(如SRCNN、EDSR)假设退化是固定的(如双三次下采
- Python 数据建模与分析项目实战预备 Day 2 - 数据构建与字段解析(模拟简历结构化数据)
蓝婷儿
pythonpython机器学习开发语言
✅今日目标构建项目所需的简历结构化数据(模拟或从开源源获取)明确各字段的含义、类型和取值范围输出首个训练数据集(CSV/DataFrame格式)一、模拟简历数据字段设计(结构化)我们将构建如下字段的结构化数据,每条代表一个候选人:字段含义类型示例值degree学历等级分类变量(本科/硕士/博士)“硕士”university_type学校等级分类变量(双一流/普通)“双一流”work_years工作
- 开发智能化的企业并购风险评估模型
开发智能化的企业并购风险评估模型关键词:企业并购、风险评估、人工智能、机器学习、深度学习、数学建模摘要:本文详细探讨了开发智能化企业并购风险评估模型的背景、核心概念、算法原理、系统架构设计以及项目实战。通过结合机器学习和深度学习技术,提出了一种基于数据驱动的智能化风险评估方法,旨在帮助企业更准确地识别和预测并购过程中的潜在风险,提升决策的科学性和有效性。第1章:企业并购风险评估模型的背景与问题描述
- Python 机器学习核心入门与实战进阶 Day 8 - 数据建模与分析项目实战预备:项目规划与需求拆解
蓝婷儿
pythonpython机器学习开发语言
✅今日目标理解数据分析/建模项目的一般流程练习项目需求理解与目标拆解明确后续模型评估指标与预期交付成果起草项目计划文档(可选写为Markdown)一、项目背景与题目建议(可选方向)项目名称简介学生成绩预测分析系统根据历史表现预测成绩是否达标、学科薄弱点等求职者简历筛选模型根据简历信息预测是否通过初筛电商用户购买预测系统分析用户行为数据预测是否购买公司销售数据趋势分析可视化+聚合分析:月销售趋势、区
- 洛谷 B3627 立方根--二分法求解整数立方根问题
jdlxx_dongfangxing
算法c++二分法
一、问题重述与数学建模给定一个正整数n,我们的目标是计算其立方根的整数部分,即找到最大的整数m满足m³≤n。这个问题可以形式化表述为:数学定义:⌊∛n⌋=max{x∈ℤ⁺|x³≤n}问题特性分析:单调性保证:立方函数f(x)=x³在正整数域上是严格单调递增的函数有界性:解的范围明确限定在[1,n]区间内离散性:我们需要寻找的是整数解而非实数解应用意义:该问题在实际中常用于需要快速估算立方根的场合,
- 数学建模问题攻略指南
Matlab精灵
数学建模数学建模matlab
数学建模是一个将现实世界的复杂问题转化成数学形式来对问题进行分析和求解的过程。这个过程涉及将实际问题中的复杂因素简化为数学结构,并用数学语言描述这些因素及其相互关系。引入一个经典问题:长方形(四角连线呈长方形)的椅子是否可以在地面上放稳,数学建模的过程就是需要将其转化成数学形式进行分析和求解,主要分为以下五个步骤。1.提出问题首先分析问题,列出问题中涉及的变量,包括适当的单位。经过分析,可以用变量
- Pandas 学习(数学建模篇)
停走的风
数学建模pandas学习
今天学习数学建模2023年C篇(228)优秀论文2023高教社杯全国大学生数学建模竞赛C题论文展示(C228)-2023C题论文-中国大学生在线一.pd.DataFramepd.DataFrame()是pandas库中用于创建二维表格数据结构(DataFrame)的核心函数。它的作用是将各种格式的数据(如字典、列表、Series等)转换为带有行索引和列标签的表格形式,便于数据处理和分析.impor
- DeepSeek 帮助自己的工作
引言简述人工智能助手在职场中的普及趋势DeepSeek作为智能创作助手的核心功能概述DeepSeek的核心能力信息检索与整合:基于用户意图精准搜索并生成答案多场景应用:技术文档撰写、数据分析、代码生成等交互优化:遵循用户指定的格式与内容规范职场应用场景与实操案例技术文档撰写自动生成API文档框架根据需求补充技术细节示例代码块与公式的规范化输出数据分析支持快速检索行业数据并生成可视化建议数学建模中的
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR