ConcurrentHashMap实现原理以及源码解析(jdk1.8)

ConcurrentHashMap实现原理以及源码解析(jdk1.8)

参考资料:

https://blog.csdn.net/xu768840497/article/details/79194701

http://www.cnblogs.com/leesf456/p/5453341.html

https://www.cnblogs.com/banjinbaijiu/p/9147434.html

 

一、数据结构

1.1、先看一下1.7中的底层数据结构

:数组(Segment) + 数组(HashEntry) + 链表(HashEntry节点)

底层一个Segments数组,存储一个Segments对象,一个Segments中储存一个Entry数组,存储的每个Entry对象又是一个链表头结点。

 

ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第1张图片

1.2、1.8中数据结构

:Node数组+链表 / 红黑树, 类似hashMap

Node数组使用来存放树或者链表的头结点,当一个链表中的数量到达一个数目时,会使查询速率降低,所以到达一定阈值时,会将一个链表转换为一个红黑二叉树,提高查询的速率。

ConcurrentHashMap相比HashMap而言,是多线程安全的,其底层数据与HashMap的数据结构相同。

ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第2张图片

 

  ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第3张图片

 

二、如何保证线程安全的

分段锁:对整个桶数组进行了分割分段(Segment),每一把锁只锁容器其中一部分数据,多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。

ReentrantLock+Segment+HashEntry。

 

使用的是优化的synchronized 关键字同步代码块 和 cas 操作了维护并发。

synchronized+CAS+HashEntry+红黑树

通过使用Synchroized关键字来同步代码块,而且只是在put方法中加锁,在get方法中没有加锁

 

三、 效率如何?

hashMap只能单线程操作,效率低下。

hashTable使用的是synchronized方法锁,若一个线程抢夺了锁,其他线程只能等到持锁线程操作完成之后才能抢锁操作。

《1.7》ConcurrentHashMap 使用的分段锁,如果一个线程占用一段,别的线程可以操作别的部分。

《1.8》简化结构,put和get不用二次哈希,一把锁只锁住一个链表或者一棵树,并发效率更加提升。

 

四、 ConcurrentHashMap源码分析

  4.1、类的继承关系 

public class ConcurrentHashMap extends AbstractMap
    implements ConcurrentMap, Serializable {}

  说明:ConcurrentHashMap继承了AbstractMap抽象类,该抽象类定义了一些基本操作,同时,也实现了ConcurrentMap接口,ConcurrentMap接口也定义了一系列操作,实现了Serializable接口表示ConcurrentHashMap可以被序列化。

  4.2、类的内部类

  ConcurrentHashMap包含了很多内部类,其中主要的内部类框架图如下图所示:

  ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第4张图片

  ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第5张图片

  说明:可以看到,ConcurrentHashMap的内部类非常的庞大,第二个图是在JDK1.8下增加的类,下面对其中主要的内部类进行分析和讲解。

   1. Node类

  Node类主要用于存储具体键值对,其子类有ForwardingNode、ReservationNode、TreeNode和TreeBin四个子类。四个子类具体的代码在之后的具体例子中进行分析讲解。

  2. Traverser类

  Traverser类主要用于遍历操作,其子类有BaseIterator、KeySpliterator、ValueSpliterator、EntrySpliterator四个类,BaseIterator用于遍历操作。KeySplitertor、ValueSpliterator、EntrySpliterator

则用于键、值、键值对的划分。

  3. CollectionView类

  CollectionView抽象类主要定义了视图操作,其子类KeySetView、ValueSetView、EntrySetView分别表示键视图、值视图、键值对视图。对视图均可以进行操作。

  4. Segment类

  Segment类在JDK1.8中与之前的版本的JDK作用存在很大的差别,JDK1.8下,其在普通的ConcurrentHashMap操作中已经没有失效,其在序列化与反序列化的时候会发挥作用。

  5. CounterCell

  CounterCell类主要用于对baseCount的计数。

  4.3 、类的属性

public class ConcurrentHashMap extends AbstractMap
        implements ConcurrentMap, Serializable {
    private static final long serialVersionUID = 7249069246763182397L;
    // 表的最大容量
    private static final int MAXIMUM_CAPACITY = 1 << 30;
    // 默认表的大小
    private static final int DEFAULT_CAPACITY = 16;
    // 最大数组大小
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    // 默认并发数
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    // 装载因子
    private static final float LOAD_FACTOR = 0.75f;
    // 转化为红黑树的阈值
    static final int TREEIFY_THRESHOLD = 8;
    // 由红黑树转化为链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;
    // 转化为红黑树的表的最小容量
    static final int MIN_TREEIFY_CAPACITY = 64;
    // 每次进行转移的最小值
    private static final int MIN_TRANSFER_STRIDE = 16;
    // 生成sizeCtl所使用的bit位数
    private static int RESIZE_STAMP_BITS = 16;
    // 进行扩容所允许的最大线程数
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
    // 记录sizeCtl中的大小所需要进行的偏移位数
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    // 一系列的标识
    static final int MOVED = -1; // hash for forwarding nodes
    static final int TREEBIN = -2; // hash for roots of trees
    static final int RESERVED = -3; // hash for transient reservations
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
    // 
    /** Number of CPUS, to place bounds on some sizings */
    // 获取可用的CPU个数
    static final int NCPU = Runtime.getRuntime().availableProcessors();
    // 
    /** For serialization compatibility. */
    // 进行序列化的属性
    private static final ObjectStreamField[] serialPersistentFields = {
            new ObjectStreamField("segments", Segment[].class),
            new ObjectStreamField("segmentMask", Integer.TYPE),
            new ObjectStreamField("segmentShift", Integer.TYPE)
    };

    // 表
    transient volatile Node[] table;
    // 下一个表
    private transient volatile Node[] nextTable;
    //
    /**
     * Base counter value, used mainly when there is no contention,
     * but also as a fallback during table initialization
     * races. Updated via CAS.
     */
    // 基本计数
    private transient volatile long baseCount;
    //
    /**
     * Table initialization and resizing control.  When negative, the
     * table is being initialized or resized: -1 for initialization,
     * else -(1 + the number of active resizing threads).  Otherwise,
     * when table is null, holds the initial table size to use upon
     * creation, or 0 for default. After initialization, holds the
     * next element count value upon which to resize the table.
     */
    // 对表初始化和扩容控制
    private transient volatile int sizeCtl;

    /**
     * The next table index (plus one) to split while resizing.
     */
    // 扩容下另一个表的索引
    private transient volatile int transferIndex;

    /**
     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
     */
    // 旋转锁
    private transient volatile int cellsBusy;

    /**
     * Table of counter cells. When non-null, size is a power of 2.
     */
    // counterCell表
    private transient volatile CounterCell[] counterCells;

    // views
    // 视图
    private transient KeySetView keySet;
    private transient ValuesView values;
    private transient EntrySetView entrySet;

    // Unsafe mechanics
    private static final sun.misc.Unsafe U;
    private static final long SIZECTL;
    private static final long TRANSFERINDEX;
    private static final long BASECOUNT;
    private static final long CELLSBUSY;
    private static final long CELLVALUE;
    private static final long ABASE;
    private static final int ASHIFT;

    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class k = ConcurrentHashMap.class;
            SIZECTL = U.objectFieldOffset
                    (k.getDeclaredField("sizeCtl"));
            TRANSFERINDEX = U.objectFieldOffset
                    (k.getDeclaredField("transferIndex"));
            BASECOUNT = U.objectFieldOffset
                    (k.getDeclaredField("baseCount"));
            CELLSBUSY = U.objectFieldOffset
                    (k.getDeclaredField("cellsBusy"));
            Class ck = CounterCell.class;
            CELLVALUE = U.objectFieldOffset
                    (ck.getDeclaredField("value"));
            Class ak = Node[].class;
            ABASE = U.arrayBaseOffset(ak);
            int scale = U.arrayIndexScale(ak);
            if ((scale & (scale - 1)) != 0)
                throw new Error("data type scale not a power of two");
            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
        } catch (Exception e) {
            throw new Error(e);
        }
    }
}

 

   说明:ConcurrentHashMap的属性很多,其中不少属性在HashMap中就已经介绍过,而对于ConcurrentHashMap而言,添加了Unsafe实例,主要用于反射获取对象相应的字段。

   4.4 、类的构造函数

   1. ConcurrentHashMap()型构造函数  

    public ConcurrentHashMap() {
    }

   说明:该构造函数用于创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。

ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第6张图片

   

ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第7张图片

2. ConcurrentHashMap(int)型构造函数

        public ConcurrentHashMap(int initialCapacity) {
            // 初始容量小于0,抛出异常
            if (initialCapacity < 0)
                throw new IllegalArgumentException();
            int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                    MAXIMUM_CAPACITY :
                    tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));// 找到最接近该容量的2的幂次方数
            // 初始化
            this.sizeCtl = cap;
        }

 

ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第8张图片

说明:该构造函数用于创建一个带有指定初始容量、默认加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。

   3. ConcurrentHashMap(Map)型构造函数

   public ConcurrentHashMap(Map m) {

        this.sizeCtl = DEFAULT_CAPACITY;
        // 将集合m的元素全部放入
        putAll(m);
    }

  说明:该构造函数用于构造一个与给定映射具有相同映射关系的新映射。

  4. ConcurrentHashMap(int, float)型构造函数

  public ConcurrentHashMap(int initialCapacity, float loadFactor) {

        this(initialCapacity, loadFactor, 1);
    }

  说明:该构造函数用于创建一个带有指定初始容量、加载因子和默认 concurrencyLevel (1) 的新的空映射。

  5. ConcurrentHashMap(int, float, int)型构造函数

    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) // 合法性判断
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

 

  说明:该构造函数用于创建一个带有指定初始容量、加载因子和并发级别的新的空映射。

  对于构造函数而言,会根据输入的initialCapacity的大小来确定一个最小的且大于等于initialCapacity大小的2的n次幂,如initialCapacity为15,则sizeCtl为16,若initialCapacity为16,则sizeCtl为16。若initialCapacity大小超过了允许的最大值,则sizeCtl为最大值。值得注意的是,构造函数中的concurrencyLevel参数已经在JDK1.8中的意义发生了很大的变化,其并不代表所允许的并发数,其只是用来确定sizeCtl大小,在JDK1.8中的并发控制都是针对具体的桶而言,即有多少个桶就可以允许多少个并发数。

  4.5 、核心函数分析

  1. putVal函数

    final V putVal(K key, V value, boolean onlyIfAbsent) {
        // 键或值为空,抛出异常
        if (key == null || value == null) throw new NullPointerException();
        // 键的hash值经过计算获得hash值
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node[] tab = table; ; ) { // 无限循环
            Node f;
            int n, i, fh;
            if (tab == null || (n = tab.length) == 0) // 表为空或者表的长度为0
                // 初始化表
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 表不为空并且表的长度大于0,并且该桶不为空
                if (casTabAt(tab, i, null,
                        new Node(hash, key, value, null))) // 比较并且交换值,如tab的第i项为空则用新生成的node替换
                    break;                   // no lock when adding to empty bin
            } else if ((fh = f.hash) == MOVED) // 该结点的hash值为MOVED
                // 进行结点的转移(在扩容的过程中)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) { // 加锁同步
                    if (tabAt(tab, i) == f) { // 找到table表下标为i的节点
                        if (fh >= 0) { // 该table表中该结点的hash值大于0
                            // binCount赋值为1
                            binCount = 1;
                            for (Node e = f; ; ++binCount) { // 无限循环
                                K ek;
                                if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) { // 结点的hash值相等并且key也相等
                                    // 保存该结点的val值
                                    oldVal = e.val;
                                    if (!onlyIfAbsent) // 进行判断
                                        // 将指定的value保存至结点,即进行了结点值的更新
                                        e.val = value;
                                    break;
                                }
                                // 保存当前结点
                                Node pred = e;
                                if ((e = e.next) == null) { // 当前结点的下一个结点为空,即为最后一个结点
                                    // 新生一个结点并且赋值给next域
                                    pred.next = new Node(hash, key,
                                            value, null);
                                    // 退出循环
                                    break;
                                }
                            }
                        } else if (f instanceof TreeBin) { // 结点为红黑树结点类型
                            Node p;
                            // binCount赋值为2
                            binCount = 2;
                            if ((p = ((TreeBin) f).putTreeVal(hash, key,
                                    value)) != null) { // 将hash、key、value放入红黑树
                                // 保存结点的val
                                oldVal = p.val;
                                if (!onlyIfAbsent) // 判断
                                    // 赋值结点value值
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) { // binCount不为0
                    if (binCount >= TREEIFY_THRESHOLD) // 如果binCount大于等于转化为红黑树的阈值
                        // 进行转化
                        treeifyBin(tab, i);
                    if (oldVal != null) // 旧值不为空
                        // 返回旧值
                        return oldVal;
                    break;
                }
            }
        }
        // 增加binCount的数量
        addCount(1L, binCount);
        return null;
    }

  说明:put函数底层调用了putVal进行数据的插入,对于putVal函数的流程大体如下。

  ① 判断存储的key、value是否为空,若为空,则抛出异常,否则,进入步骤②

  ② 计算key的hash值,随后进入无限循环,该无限循环可以确保成功插入数据,若table表为空或者长度为0,则初始化table表,否则,进入步骤③

  ③ 根据key的hash值取出table表中的结点元素,若取出的结点为空(该桶为空),则使用CAS将key、value、hash值生成的结点放入桶中。否则,进入步骤④

  ④ 若该结点的的hash值为MOVED,则对该桶中的结点进行转移,否则,进入步骤⑤

  ⑤ 对桶中的第一个结点(即table表中的结点)进行加锁,对该桶进行遍历,桶中的结点的hash值与key值与给定的hash值和key值相等,则根据标识选择是否进行更新操作(用给定的value值替换该结点的value值),若遍历完桶仍没有找到hash值与key值和指定的hash值与key值相等的结点,则直接新生一个结点并赋值为之前最后一个结点的下一个结点。进入步骤⑥

  ⑥ 若binCount值达到红黑树转化的阈值,则将桶中的结构转化为红黑树存储,最后,增加binCount的值。

  在putVal函数中会涉及到如下几个函数:initTable、tabAt、casTabAt、helpTransfer、putTreeVal、treeifyBin、addCount函数。下面对其中涉及到的函数进行分析。

  其中 initTable函数源码如下

    private final Node[] initTable() {
        Node[] tab;
        int sc;
        while ((tab = table) == null || tab.length == 0) { // 无限循环
            if ((sc = sizeCtl) < 0) // sizeCtl小于0,则进行线程让步等待
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { // 比较sizeCtl的值与sc是否相等,相等则用-1替换
                try {
                    if ((tab = table) == null || tab.length == 0) { // table表为空或者大小为0
                        // sc的值是否大于0,若是,则n为sc,否则,n为默认初始容量
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        // 新生结点数组
                        Node[] nt = (Node[]) new Node[n];
                        // 赋值给table
                        table = tab = nt;
                        // sc为n * 3/4
                        sc = n - (n >>> 2);
                    }
                } finally {
                    // 设置sizeCtl的值
                    sizeCtl = sc;
                }
                break;
            }
        }
        // 返回table表
        return tab;
    }

  说明:对于table的大小,会根据sizeCtl的值进行设置,如果没有设置szieCtl的值,那么默认生成的table大小为16,否则,会根据sizeCtl的大小设置table大小。

  tabAt函数源码如下  

  static final  Node tabAt(Node[] tab, int i) {
        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }

  说明:此函数返回table数组中下标为i的结点,可以看到是通过Unsafe对象通过反射获取的,getObjectVolatile的第二项参数为下标为i的偏移地址。

  casTabAt函数源码如下  

  static final  boolean casTabAt(Node[] tab, int i,
                                        Node c, Node v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }

  说明:此函数用于比较table数组下标为i的结点是否为c,若为c,则用v交换操作。否则,不进行交换操作。

  helpTransfer函数源码如下

    final Node[] helpTransfer(Node[] tab, Node f) {
        Node[] nextTab;
        int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
                (nextTab = ((ForwardingNode) f).nextTable) != null) { // table表不为空并且结点类型使ForwardingNode类型,并且结点的nextTable不为空
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                    (sc = sizeCtl) < 0) { // 条件判断
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || transferIndex <= 0) //
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { // 比较并交换
                    // 将table的结点转移到nextTab中
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

  说明:此函数用于在扩容时将table表中的结点转移到nextTable中。

  putTreeVal函数源码如下

    final TreeNode putTreeVal(int h, K k, V v) {
        Class kc = null;
        boolean searched = false;
        for (TreeNode p = root; ; ) {
            int dir, ph;
            K pk;
            if (p == null) {
                first = root = new TreeNode(h, k, v, null, null);
                break;
            } else if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                    (kc = comparableClassFor(k)) == null) ||
                    (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                            (q = ch.findTreeNode(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                                    (q = ch.findTreeNode(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }

            TreeNode xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                TreeNode x, f = first;
                first = x = new TreeNode(h, k, v, f, xp);
                if (f != null)
                    f.prev = x;
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                if (!xp.red)
                    x.red = true;
                else {
                    lockRoot();
                    try {
                        root = balanceInsertion(root, x);
                    } finally {
                        unlockRoot();
                    }
                }
                break;
            }
        }
        assert checkInvariants(root);
        return null;
    }

  说明:此函数用于将指定的hash、key、value值添加到红黑树中,若已经添加了,则返回null,否则返回该结点。

  treeifyBin函数源码如下

    private final void treeifyBin(Node[] tab, int index) {
        Node b;
        int n, sc;
        if (tab != null) { // 表不为空
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) // table表的长度小于最小的长度
                // 进行扩容,调整某个桶中结点数量过多的问题(由于某个桶中结点数量超出了阈值,则触发treeifyBin)
                tryPresize(n << 1);
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { // 桶中存在结点并且结点的hash值大于等于0
                synchronized (b) { // 对桶中第一个结点进行加锁
                    if (tabAt(tab, index) == b) { // 第一个结点没有变化
                        TreeNode hd = null, tl = null;
                        for (Node e = b; e != null; e = e.next) { // 遍历桶中所有结点
                            // 新生一个TreeNode结点
                            TreeNode p =
                                    new TreeNode(e.hash, e.key, e.val,
                                            null, null);
                            if ((p.prev = tl) == null) // 该结点前驱为空
                                // 设置p为头结点
                                hd = p;
                            else
                                // 尾节点的next域赋值为p
                                tl.next = p;
                            // 尾节点赋值为p
                            tl = p;
                        }
                        // 设置table表中下标为index的值为hd
                        setTabAt(tab, index, new TreeBin(hd));
                    }
                }
            }
        }
    }

  说明:此函数用于将桶中的数据结构转化为红黑树,其中,值得注意的是,当table的长度未达到阈值时,会进行一次扩容操作,该操作会使得触发treeifyBin操作的某个桶中的所有元素进行一次重新分配,这样可以避免某个桶中的结点数量太大。

  addCount函数源码如下

    private final void addCount(long x, int check) {
        CounterCell[] as;
        long b, s;
        if ((as = counterCells) != null ||
                !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { // counterCells不为空或者比较交换失败
            CounterCell a;
            long v;
            int m;
            // 无竞争标识
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                    (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                    !(uncontended =
                            U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { //
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            s = sumCount();
        }
        if (check >= 0) {
            Node[] tab, nt;
            int n, sc;
            while (s >= (long) (sc = sizeCtl) && (tab = table) != null &&
                    (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                } else if (U.compareAndSwapInt(this, SIZECTL, sc,
                        (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }

  说明:此函数主要完成binCount的值加1的操作。

  2. get函数

    public V get(Object key) {
        Node[] tab; Node e, p; int n, eh; K ek;
        // 计算key的hash值
        int h = spread(key.hashCode()); 
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) { // 表不为空并且表的长度大于0并且key所在的桶不为空
            if ((eh = e.hash) == h) { // 表中的元素的hash值与key的hash值相等
                if ((ek = e.key) == key || (ek != null && key.equals(ek))) // 键相等
                    // 返回值
                    return e.val;
            }
            else if (eh < 0) // 结点hash值小于0
                // 在桶(链表/红黑树)中查找
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) { // 对于结点hash值大于0的情况
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

  说明:get函数根据key的hash值来计算在哪个桶中,再遍历桶,查找元素,若找到则返回该结点,否则,返回null。

  3. replaceNode函数

  final V replaceNode(Object key, V value, Object cv) {
        // 计算key的hash值
        int hash = spread(key.hashCode());
        for (Node[] tab = table;;) { // 无限循环
            Node f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null) // table表为空或者表长度为0或者key所对应的桶为空
                // 跳出循环
                break;
            else if ((fh = f.hash) == MOVED) // 桶中第一个结点的hash值为MOVED
                // 转移
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                boolean validated = false;
                synchronized (f) { // 加锁同步
                    if (tabAt(tab, i) == f) { // 桶中的第一个结点没有发生变化
                        if (fh >= 0) { // 结点hash值大于0
                            validated = true;
                            for (Node e = f, pred = null;;) { // 无限循环
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) { // 结点的hash值与指定的hash值相等,并且key也相等
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) { // cv为空或者与结点value相等或者不为空并且相等
                                        // 保存该结点的val值
                                        oldVal = ev;
                                        if (value != null) // value为null
                                            // 设置结点value值
                                            e.val = value;
                                        else if (pred != null) // 前驱不为空
                                            // 前驱的后继为e的后继,即删除了e结点
                                            pred.next = e.next;
                                        else
                                            // 设置table表中下标为index的值为e.next
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        else if (f instanceof TreeBin) { // 为红黑树结点类型
                            validated = true;
                            // 类型转化
                            TreeBin t = (TreeBin)f;
                            TreeNode r, p;
                            if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) { // 根节点不为空并且存在与指定hash和key相等的结点
                                // 保存p结点的value
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) { // cv为空或者与结点value相等或者不为空并且相等
                                    oldVal = pv;
                                    if (value != null) 
                                        p.val = value;
                                    else if (t.removeTreeNode(p)) // 移除p结点
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (validated) {
                    if (oldVal != null) {
                        if (value == null)
                            // baseCount值减一
                            addCount(-1L, -1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }

  说明:此函数对remove函数提供支持,remove函数底层是调用的replaceNode函数实现结点的删除。

五、总结

  1. 在 JDK1.7 中,ConcurrentHashMap 采用了分段锁策略,将一个 HashMap 切割成 Segment 数组,其中 Segment 可以看成一个 HashMap, 不同点是 Segment 继承自 ReentrantLock,在操作的时候给 Segment 赋予了一个对象锁,从而保证多线程环境下并发操作安全。ConcurrentHashMap采用了数组+Segment+分段锁的方式实现。ConcurrentHashMap定位一个元素的过程需要进行两次Hash操作。

    第一次Hash定位到Segment,第二次Hash定位到元素所在的链表的头部。

    ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第9张图片

     

  2. JDK1.8取消了segment数组,直接用table保存数据,锁的粒度更小,减少并发冲突的概率。原来是对需要进行数据操作的Segment加锁,现调整为对每个数组元素加锁(Node)。JDK1.8 中的 ConcurrentHashMap 与 HashMap 非常相似,只是 ConcurrentHashMap 中增加了同步的操作和 CAS 来实现并发操作。采用了synchronized+CAS+数组+链表+红黑树的实现方式来设计。

    ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第10张图片

     

  3. JDK1.8存储数据时采用了链表+红黑树的形式,纯链表的形式时间复杂度为O(n),红黑树则为O(logn),性能提升很大。什么时候链表转红黑树?当key值相等的元素形成的链表中元素个数超过8个的时候。
  4. JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了。
  5. JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档。
  6. JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock
    1. 因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了
    2. JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然
    3. 在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个选择依据
  7. JDK8中的实现也是锁分离思想,只是锁住的是一个node,而不是JDK7中的Segment;锁住Node之前的操作是基于在volatile和CAS之上无锁并且线程安全的。put操作的流程图如下:

 

ConcurrentHashMap实现原理以及源码解析(jdk1.8)_第11张图片

 

 

 

每天努力一点,每天都在进步。

你可能感兴趣的:(源码解析,hashmap,红黑树)