- Dijkstra算法求最短路径问题
Dijkstra算法求最短路径问题——HM图论中最常见的问题就应是最短路径问题了,解决这一问题的几个基本算法有三个:Floyed、Dijkstra和SPFA了。现在我来浅谈一下Dijkstra的思想与实现。单纯的Dijkstra并不是很快,算一个点到其余各点的时间复杂度是O(n^2)级别,算每个点到其余各点的复杂度就是O(n^3)了,在提高组竞赛中不占优势,但其进行优化后便很强大了,如用堆优化Di
- 图论篇--代码随想录算法训练营第五十九天打卡|Bellman_ford 算法精讲,SPFA算法,Bellman ford之判断负权回路,Bellman ford之单源有限最短路
無量空所
leetcode算法图论c++
本系列算法用来解决有负权边的情况Bellman_ford算法精讲题目链接:94.城市间货物运输I题目描述:某国为促进城市间经济交流,决定对货物运输提供补贴。共有n个编号为1到n的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本-政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用
- 最小费用最大流算法
Da_秀
CCFCSP题库训练CSP信奥赛知识点讲解算法开发语言数据结构动态规划图论c++
最小费用最大流算法原理问题:网络中有源点(起点)和汇点(终点),每条边有流量上限和单位流量费用。求:从源点到汇点的最大流量在流量最大的前提下,总费用最小核心思想:在找增广路时,选择单位费用之和最小的路径(使用SPFA找最短路)实现步骤建图:使用链式前向星存储(含反向边)正向边:容量cap,费用cost反向边:容量0,费用-cost算法流程:Step1:用SPFA找费用最短路(记录路径和最小流量)S
- Dijkstra算法进阶:如何处理负权边问题?
数据结构与算法学习
算法网络服务器ai
Dijkstra算法进阶:如何处理负权边问题?关键词:Dijkstra算法、负权边、最短路径、Bellman-Ford算法、SPFA算法摘要:Dijkstra算法是求解单源最短路径的经典算法,但它有一个“致命短板”——无法处理包含负权边的图。本文将从Dijkstra算法的底层逻辑出发,用“快递员送外卖”的生活案例解释负权边为何会让Dijkstra失效;接着拆解Bellman-Ford、SPFA等能
- 网工实验——OSPF配置
鸡哥爱技术
智能路由器网络
网络拓扑图配置1.为每个路由器配置接口(略)(详细见RIP实验)2.配置OSPFAR1[AR1]ospf[AR1-ospf-1]area1[AR1-ospf-1-area-0.0.0.1]network172.16.1.10.0.0.0#精确配置网络,也可以像下面那条命令那样配置[AR1-ospf-1-area-0.0.0.1]network192.168.1.00.0.0.255AR2[AR2]
- OSPF的拓展配置
古德赖可可
HCIP知识小记网络
OSPF的拓展配置1.OSPF的手工认证1.接口认证intg0/0/0ospfauthentication-modemd51cipher123456//123456:你自己配置的密码cipher:密文展示plain:明文显示2.区域认证----针对区域内的所有接口做接口认证[r2-ospf-1-area-0.0.0.0]authentication-modemd51cipher1234563.虚链
- Bellman-ford算法
可可亚
图论算法图论bellman–fordalgorithm
Bellman-ford算法解决的问题思路模版特定问题解决的问题最短路问题,时间复杂度为O(n∗m)O(n*m)O(n∗m),可以有负权边,一般情况下都是SPFA算法更加优越,一般只有一种情况下必须使用Bellman-ford算法,那就是限制到最小距离的边数k,其他情况下一般SPFA算法更加适用。思路对每条边都进行松弛操作n-1次,一点能实现最短路。松弛:例如一条边a->b,权值为w,那么dist
- Bellman-Ford算法,Bellman-Ford队列优化(SPFA)
hide_on-BUSh
算法数据结构
Bellman-Ford算法能解决负权的问题但不能解决负权回路的问题但是Bellman-Ford可以判断是否可以存在负环,同样的SPFA也可以判断负环的存在。Bellman-Ford主要是将每个点每一次都松弛while(b){b=false;for(inti=1;iq;intspfa(ints,intt){memset(vis,0,sizeof(vis));memset(dis,0x3f,size
- 算法笔记.spfa算法(bellman-ford算法的改进)
xin007hoyo
算法笔记数据结构
题目:(来源于AcWing)给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出格式输出一个整数,表示1号点到n号点的最短距离。如果路径不存在,则输出i
- 信息学奥赛一本通 1504:【例 1】Word Rings | 洛谷 SP2885 WORDRING - Word Rings
君义_noip
信息学奥赛一本通题解洛谷题解信息学奥赛C++图论算法
【题目链接】ybt1504:【例1】WordRings洛谷SP2885WORDRING-WordRings【题目考点】1.图论:SPFA_DFS判断负环SPFA_DFS算法Bellman-Ford算法栈优化,也称SPFA_DFS算法。主要用于寻找图中是否存在负环或正环。以判断负环为例:将dis数组每个元素初值设为0尝试从每个顶点出发调用SPFA_DFS算法。如果访问到还在搜索过程中(在栈内)的顶点
- 【图论】bellman-ford 算法 + spfa 算法(基于队列优化)单源最短路(code c++)
idiot5liev
图论算法图论bellman–fordalgorithmc++spfa链式前向星
目录&索引一、前言题目二、算法原理bellman-ford、spfa算法关系spfa算法通俗介绍三、程序代码朴素bellman-fordcodec++spfacodec++四、结论一、前言图为点和边的集合边方向->有向无向边边权值->是否有负权边以及边是否成环,对点来说的出入度存图方式邻接矩阵邻接表链式前向星最短路径算法floyd——多源,时间复杂度O(n^3)dijkstra——单源,推荐因为快
- 算法系列——四种最短路算法:Floyd,Dijkstra,Bellman-Ford,SPFA
ITString
经验之谈java算法数据结构
写在前面:好久没有更新博客了,距离上一次更新已经过去了十一个月了,一是因为课业繁重,二是因为这一年中接了不少项目。其实早就想写写算法和数据结构相关的文章了,之前在Coders群里也说过17年要多写写算法和数据结构,奈何计划赶不上变化,实在是没有工夫写。现在到了18年了,最近刚放寒假,数据科学导论实验今天交上了最后一个,总算是有些闲工夫了,准备写些东西却又不知道应该写什么,算法那么多,从哪个写起呢?
- NO.95十六届蓝桥杯备战|图论基础-单源最短路|负环|BF判断负环|SPFA判断负环|邮递员送信|采购特价产品|拉近距离|最短路计数(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯图论c++
P3385【模板】负环-洛谷如果图中存在负环,那么有可能不存在最短路。BF算法判断负环执⾏n轮松弛操作,如果第n轮还存在松弛操作,那么就有负环。#includeusingnamespacestd;constintN=2e3+10,M=3e3+10;intn,m;intpos;structnode{intu,v,w;}e[M*2];intdist[N];boolbf(){//初始化memset(di
- 图论学习笔记(4):Bellman-ford算法和SPFA算法
sml259(劳改版)
算法数据库SPFABellman-ford
声明:这里简单聊聊我们Bellman-ford算法的思路,我也查了一些资料来进行辅助了解,我们主要掌握SPFA算法的思现,因为我们Bellman-ford算法的时间复杂度是稳定的O(VE)(其中V是顶点个数,E是边的个数),在大多数算法题目里这个时间复杂度已经很大了(打XCPC应该O(n^2)左右几乎都会卡)。而我们的SPFA算法平均情况下的时间复杂度是O(kE)(k是一个小于2的数),所以在大多
- 数学建模--图论与最短路径
不到w粉不改名
数学建模图论最短路径DijkstraFloyd算法Bellman-FordSPFA
目录图论与最短路径问题最短路径问题定义常用的最短路径算法Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法应用实例结论延伸如何在实际应用中优化Dijkstra算法以提高效率?数据结构优化:边的优化:并行计算:稀疏矩阵和向量运算:代码优化:Floyd算法在处理多源最短路径问题时的具体实现步骤是什么?Bellman-Ford算法如何检测并处理负权边的图中的负环?SPFA算法与B
- (代码随想录)BEllman_ford算法 及其优化 SPFA
cq.gi
算法
代码随想录(知识提炼)Bellman_ford算法用处解决带负权值的单源最短路问题核心思想对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。何为松弛minDist[B]表示到达B节点最小权值,minDist[B]有哪些状态可以推出来?状态一:minDist[A]+value可以推出minDist[B]状态二:minDist[B]本身就有权值(可能是其他边链接的节点B例如节点C,以至
- 最短路径--SPFA算法
OYangxf
数据结构与算法算法图论数据结构
SPFA算法的引入实际上,SPFA算法其实是对Bellman-Ford算法的优化,它通过队列这种数据结构,使得在松弛操作时不会去遍历无关的边。SPFA算法的代码实现#include#include#includeusingnamespacestd;typedefpairPII;intn,m,cnt;intdis[105];intvis[105];ints;inthead[105];intuse[1
- 探索域名安全新境界:checkdmarc深度解析与应用推荐
幸竹任
探索域名安全新境界:checkdmarc深度解析与应用推荐checkdmarcAparserforSPFandDMARCDNSrecords项目地址:https://gitcode.com/gh_mirrors/ch/checkdmarc在数字化时代,电子邮件的安全性成为了企业及个人网络防护的重要一环。SPF(SenderPolicyFramework)、DMARC(Domain-basedMes
- 常见算法模板(python)
雨拾
python算法深度优先
常见算法模板(python)二分搜索(实数搜索、整数搜索)前缀和、差分数组深度优先搜索DFS宽度优先搜索BFS并查集树状数组线段树稀疏表动态规划(矩阵)快速幂字符串匹配算法-KMPFloyd算法Dijkstra算法Bellman-Ford算法SPFA算法Prim算法Kruskal算法二分搜索(实数搜索、整数搜索)#-*-coding:utf-8-*-#@Author:BYW-yuwei#@Soft
- 代码随想录第六十天| Bellman_ford 队列优化算法(又名SPFA) bellman_ford之判断负权回路 bellman_ford之单源有限最短路
kill bert
代码随想录算法训练营算法
Bellman-Ford队列优化算法(SPFA)精讲题目描述某国共有n个城市,通过m条单向道路连接。每条道路的权值为运输成本减去政府补贴。要求找出从城市1到城市n的最低运输成本路径,若成本为负则表示盈利,若无路径则输出“unconnected”。输入包含n和m,接着m行每行三个整数s、t、v,表示从s到t的道路权值为v。输出为最低成本或“unconnected”。输入输出示例输入:6756-212
- 图论--最短路算法
Dream_Maker_yangkai
c++图论算法知识点总结和梳理图论
图论–最短路算法–yangkai在解决最短路问题时,优秀的最短路算法是必不可少的工具在这里介绍几种实用的算法1Floyd2Dijkstra算法3Dijkstra+堆优化4Bellman-Ford5SPFA(ShortestPathFasterAlgorithm)0图的储存方式边目录(记下来,仅此而已)邻接矩阵(适合稠密图)邻接表(适合稀疏图)链式前向星(万能):从每一个点把与之相连的边拉成一条链用
- 图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)
HX_2022
数据结构与算法数据结构算法图论
图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)1、图论最短路径概述图论算法为了求解一个顶点到另一个顶点的最短路径,即如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径,使得沿此路径各边上的权值总和(即从源点到终点的距离)达到最小,这条路径称为最短路径(shortestpath)。最短路径有很多特殊的情况,包括有向图还是
- 代码随想录算法训练营第六十五天| 图论10
Rachela_z
算法图论
Bellman_ford队列优化算法(又名SPFA)代码随想录importcollectionsdefmain():n,m=map(int,input().strip().split())edges=[[]for_inrange(n+1)]for_inrange(m):src,dest,weight=map(int,input().strip().split())edges[src].append
- P10948 升降梯上 灰 题解
M_CI_
算法
Part0.前言没想到SPFA-SLF冲进了最优解第一版,比多数Dijkstra还快。评测记录(SPFA-SLF43ms)评测记录(Dijkstra44ms)Part1.题意简述有MMM个移动系数−Nusingnamespacestd;#defineintlonglong#definepiipair#definefifirst#definesesecondintn,m,s,c[30],dis[10
- Day60 图论part10
2401_83448199
图论
今天大家会感受到Bellman_ford算法系列在不同场景下的应用。建议依然是:一刷的时候,能理解原理,知道Bellman_ford解决不同场景的问题,照着代码随想录能抄下来代码就好,就算达标。二刷的时候自己尝试独立去写,三刷的时候才能有一定深度理解各个最短路算法。Bellman_ford队列优化算法(又名SPFA)代码随想录importjava.util.*;publicclassMain{pu
- 单源最短路径
陵易居士
数据结构与算法算法图论
目录无负权单源最短路径迪杰斯特拉算法(dijkstra)朴素版迪杰斯特拉小根堆优化版本dijkstra有负权的图的单源最短路径SPFA总结无负权单源最短路径在处理图论相关问题时,经常会遇到求一点到其他点的最短距离是多少的问题,很多实际应用场景的题目也可以转化成求最短路的问题,这里我们先来了解没有负权的图的最短路问题.迪杰斯特拉算法(dijkstra)迪杰斯特拉算法是由dijkstra提出的,它的主
- 【noip2009】最优贸易 tarjan+拓扑+dp或spfa
anantheparty
noip图论动态规划拓扑spfanoipspfatarjan拓扑排序dp
描述C国有n个大城市和m条道路,每条道路连接这n个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这m条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为1条。C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。商人阿龙来到C国旅游。当他得知同一种商品
- 小结:路由引入问题
flying robot
HCIA/HCIP笔记
在华为路由器中,路由引入(RouteRedistribution)是实现不同路由协议间通信的关键技术。通过路由引入,可以将一种路由协议学习到的路由信息分发到另一种协议中,实现多协议网络的互通。以下是华为路由器不同协议间路由引入的总结:默认优先级直接连接路由(Direct):0OSPF:10IS-IS:15静态路由(Static):60RIP:100OSPFASE(OSPFAutonomousSys
- acwing搜索与图论(二)spfa
一缕叶
算法图论算法
#include#include#include#includeusingnamespacestd;typedefpairPII;constintN=10010;intn,m;inth[N],e[N],ne[N],w[N],idx;intdist[N];boolst[N];voidadd(inta,intb,intc){e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx
- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&