- 关于前端的性能优化
性能优化主要涵盖了以下四个方面:(tip:仅代表个人总结,如有不当,还希望看到的大佬多多指示)减少网络请求:合并文件、使用CDN、启用缓存。优化资源加载:代码分割、懒加载、图片压缩。提升渲染性能:减少重绘回流、防抖节流、使用WebWorker。监控和迭代:定期使用工具检测性能,持续优化。一、网络层面优化减少HTTP请求合并文件:将多个CSS或JavaScript文件合并成一个,减少请求次数。使用C
- AI Agent开发第60课-巧用QWEN3.0 0.6B:小身板扛大旗,AI界的轻骑兵
TGITCIC
AIAgent开发大全qwen3qwenaliqwen国产大模型小模型开源小模型aiagent
第一章:小模型的生存法则——为什么0.6B参数就够了?1.1参数量的"黄金分割点"模型类型参数量推理延迟(ms)并发量(QPS)Qwen-0.6B6亿15-3010万+Qwen-1.5B15亿50-805万Qwen-7B70亿200+1万数据对比显示,当参数量超过6亿后,性能提升与成本增长呈现"抛物线"关系。就像智能手机从4G到5G的迭代,用户感知不到的速度提升,却要为硬件升级买单。Qwen-0.
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 《谷子书店》第六节 这是一个最好的时代,也是一个最坏的时代。
幸福de飞鱼
今天,阅读的是《谷子书店》第十一章《查泰莱夫人的情人》和第十二章《悲惨世界》。《查泰莱夫人的情人》主要讲的是年轻时的阿婆对爱的的期待和向往。正如“查泰莱夫人的雨”也落在了阿婆的世界里悸动。“你所经历的现在正是未来的一部分,正如过去也是现在的一部分。它们不能分割,彼此吞噬。我们这些时间的奴仆,终将要带着现在犯下的罪孽走向未来。”——摘自司徒老师未出版的书稿。《悲惨世界》这一章引用了冉阿让历经苦难的故
- 华为OD机考2025B卷 - 仿LISP运算 (Java & Python& JS & C++ & C )
算法大师
最新华为OD机试真题华为OD机试真题(Java/JS/Py/C)华为odjavalispjavascriptc++python
最新华为OD机试真题目录:点击查看目录华为OD面试真题精选:点击立即查看2025华为od机试2025B卷-华为机考OD2025年B卷题目描述LISP语言唯一的语法就是括号要配对。形如(OPP1P2…),括号内元素由单个空格分割。其中第一个元素OP为操作符,后续元素均为其参数,参数个数取决于操作符类型。注意:参数P1,P2也有可能是另外一个嵌套的(OPP1P2…),当前OP类型为add/sub/mu
- 【Python】pandas.cut()函数的用法
pandas.cut()函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。基本用法pandas.cut()的基本语法如下:pandas.cut(x,bins,right=True,labels=None,retbins=Fals
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 云服务器与 VPS 的区别
老邵
云服务器又称为云主机,是通过大规模统一调度,将一些硬件设备虚拟为现实中的主机的技术。VPS是将一台真实的主机通过软件虚拟成多个小主机的技术。二者区别:云服务器就是一台主机,和真实的主机没有区别,还可以弹性调整配置。VPS是由一个主机分割的,独立性更差,多个VPS有可能共享一个CPU内存。用租房子来比喻的话,云服务器是租一个房子,VPS是租一个房子分出来的一个单元。AlexeyRuban2016-0
- 深入详解:决策树在医学影像分割特征选择中的应用与实现
猿享天开
决策树算法机器学习人工智能
深入详解:决策树在医学影像分割特征选择中的应用与实现决策树(DecisionTree)作为一种经典的机器学习算法,以其简单、直观和可解释性强的特点,在医学影像分割的特征选择中扮演了重要角色。医学影像分割(如分割脑肿瘤、肝脏、肺结节等)需要从高维影像数据中提取关键特征,以提升分割模型的精度和效率。决策树通过构建树形结构,筛选对分割任务最重要的特征,降低数据维度,同时提供可解释的规则。本文将从原理、实
- 组合问题(分割字符串)
limitless_peter
算法
131.分割回文串-力扣(LeetCode)classSolution{private:vector>result;vectorpath;voidbacktracking(string&s,intstartIndex){if(startIndex>=s.size()){result.push_back(path);return;}for(inti=startIndex;i>partition(st
- 代码随想录训练因第三十天| 39.组合总和 40.组合总和ll 131.分割回文串
焜昱错眩..
算法
39.组合总和:文档讲解:代码随想录|39.组合总和视频讲解:带你学透回溯算法-组合总和(对应「leetcode」力扣题目:39.组合总和)|回溯法精讲!_哔哩哔哩_bilibili状态:已做出思路:这道题目的关键点是给出的数组是无重复的元素,并且同一个数字能无限重复使用,那么使用回溯的话递归条件就按照题目要求,就是组合数的和等于目标值。题目并没有限制组合数个数,所以不用记录每次组合个数。设置三个
- SpringBoot—整合log4j2入门和log4j2.xml配置详解
LuckyTHP
springbootlog4jxml
引言对于一个线上程序或者服务而言,重要的是要有日志输出,这样才能方便运维。而日志的输出需要有一定的规划,如日志命名、日志大小,日志分割的文件个数等。在Spring的框架下,我们可以使用log4j来进行日志的设置,高版本的SpringBoot会使用log4j2。介绍log4j2概述截取官网的原话:ApacheLog4j2isanupgradetoLog4jthatprovidessignifican
- 秋招Day20 - 微服务 - 概念
Java初学者小白
#分布式八股微服务架构云原生java
什么是微服务?将一个大型的单体项目分割成一个个可以独立开发和部署的小服务,服务之间松耦合,可以通过轻量级通信机制(比如HTTP)相互协作微服务带来了哪些挑战?介绍一下一下Dubbo?Dubbo是一个高性能、轻量级的Java微服务框架,它提供了服务的注册与发现(配合注册中心)、服务间调用(RPC)、负载均衡(权重)、容错(重试、快速失败)等功能Dubbo使用是基于RPC的通信模型,支持多种传输协议,
- TypeScript的export用法
无风听海
HarmonyOStypescriptimport
在TypeScript中,export用于将模块中的变量、函数、类、类型等暴露给外部使用。export语法允许将模块化的代码分割并在其他文件中导入。1.命名导出(NamedExport)命名导出是TypeScript中最常见的一种导出方式,它允许你导出多个实体,导入时需要使用相同的名字。语法export{,,...};或者直接在声明时进行导出:export;示例//math.tsexportcon
- 图像处理全栈指南:从传统算法到深度学习,再到FPGA移植
阿牛的药铺
图像算法区图像处理算法深度学习
图像处理全栈指南:从传统算法到深度学习,再到FPGA移植一、引言:图像处理是光学类产品的“大脑”光学类产品(可见光摄像头、红外热成像、光谱仪)的核心价值,在于将光信号转化为可理解的图像信息。而图像处理算法,就是解读这些信息的“大脑”——从传统的边缘检测到深度学习的目标识别,从实时降噪到高维光谱分割,每一步都决定了产品的性能(如分辨率、帧率、功耗)。对于算法移植工程师(科研助理1)岗位而言,需要掌握
- gis怎么提取水系_深度学习在GIS中的应用
weixin_36214932
gis怎么提取水系
近年来,人工智能(AI)飞速发展,在诸如图像识别,图像分割和目标智能提取等任务上,达到甚至在某些方面超过了人工的准确度。人工智能在图像识别方面的优势,为AI和GIS的结合提供了前所未有的契机。人工智能,机器学习和深度学习正在帮助我们认识世界、改善世界。AI是计算机科学的一个重要分支,在某种程度上具有类似人类工作的执行能力,能以一种新的与人类相似的方式做出智能的反应,机器学习利用数据驱动算法从数据中
- 14、基于无人机与CNN技术的森林研究:原木识别与冠层空隙分析
Sunny
计算科学前沿:ICCSA2021精选无人机CNN原木识别
基于无人机与CNN技术的森林研究:原木识别与冠层空隙分析基于CNN的原木识别研究近年来,基于单根原木追踪圆木的方法备受关注。此前的研究提出了一种基于原木端面图像的物理自由方法,借鉴了指纹和虹膜识别的技术,在使用真实分割数据时取得了不错的效果。但在实际应用中,需要一个完全自动化的系统。为了填补这一空白,研究采用了基于卷积神经网络(CNN)的分割方法与原木识别方法相结合的方式,并与传统原木识别方法在自
- yolov8seg如何获取每个结果的mask,不是一整个的mask
boss-dog
视觉算法开发yolov8rk3588
使用rk3588开发板对yolov8-seg进行推理时,瑞芯微官方代码中对推理的结果进行了封装,返回的分割结果是所有目标的mask,而不是单个目标的mask。yolov8seg怎么获得每个结果的mask,不是一整个的mask:https://github.com/airockchip/rknn_model_zoo/issues/175解决postprocess.h中关于检测结果的结构体解析type
- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- 华为OD机试_2025 B卷_人气最高的店铺(Python,200分)(附详细解题思路)
蜗牛的旷野
华为OD机试Python版华为odpython算法
题目描述某购物城有m个商铺,现决定举办一场活动选出人气最高店铺。活动共有n位市民参与,每位市民只能投一票,但1号店铺如果给该市民发放q元的购物补贴,该市民会改为投1号店铺。请计算1号店铺需要最少发放多少元购物补贴才能成为人气最高店铺(即获得的票数要大于其他店铺),如果1号店铺本身就是票数最高店铺,返回0。输入描述第一行为小写逗号分割的两个整数n,m,其中:第一个整数n表示参与的市民总数第二个整数m
- logrotate&timer使用与介绍
qsjming
linux运维服务器
logrotatelogrotate程序是一个日志文件管理工具。用于分割日志文件,删除旧的日志文件,并创建新的日志文件,起到“转储”作用。可以节省磁盘空间。1、配置文件介绍Linux系统默认安装logrotate工具,它默认的配置文件在/etc/logrotate.conf/etc/logrotate.d/logrotate.conf是主要的配置文件,logrotate.d是一个目录,该目录里的所
- 超超详细的指针讲解
NorthTruths
C语言jvm数据结构c语言
本篇将先初步介绍指针的各种有关知识,然后再讲解指针与数组、指针与函数等目录内存指针基本有关知识指针有关操作符:指针变量的定义:指针变量的大小:指针变量类型的意义:指针运算:野指针:二级指针:特殊点的指针类型数组指针:函数指针空指针首先要清楚一点,指针和内存是不可分割的,所以我们要先对内存有一定了解才能学懂指针。内存内存被划分为一个个内存单元,大小取一个字节,我们可以这样理解:把内存看作一个个房间,
- [2025CVPR-图象合成、生成方向]ODA-GAN:由弱监督学习辅助的正交解耦比对GAN 虚拟免疫组织化学染色
清风AI
计算机视觉算法深度学习算法详解及代码复现生成对抗网络机器学习目标检测目标跟踪人工智能傅立叶分析深度学习
目录1.背景和动机2.方法概述:ODA-GAN框架2.1弱监督分割管道2.2样本重新划分策略2.3ODA-GAN核心模块3.实验设置与结果3.1数据集和评估指标3.2性能比较3.3消融研究4.结论与贡献1.背景和动机虚拟免疫组化(IHC)染色技术旨在通过生成模型将H&E染色图像转换为IHC染色图像,从而避免繁琐的物理染色过程(如重复切片和抗体处理)。然而,现有方法面临关键挑战:染色不真实与不可靠性
- 工业缺陷检测的计算机视觉方法总结
思绪漂移
计算机视觉人工智能缺陷检测
工业缺陷检测的计算机视觉方法总结传统方法特征提取方式:颜色:基于HSV/RGB空间分析,如颜色直方图、颜色矩等纹理:采用LBP、Haar、Gabor滤波器等算子提取纹理模式形状:基于Hu矩、Zernike矩等数学描述符刻画几何特性尺寸:通过连通域分析计算物体像素面积、周长等参数典型处理流程:手动设计特征提取算法建立规则分类器(如SVM、决策树)基于阈值分割目标区域深度学习方法核心特点:端到端学习:
- 将Detection 2模型实例分割功能集成到大模型后门攻击实验中的完整指南
神经网络15044
算法python深度学习人工智能神经网络算法图像处理
将Detection2模型实例分割功能集成到大模型后门攻击实验中的完整指南前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景与意义在计算机视觉领域,实例分割是一项关键任务,它不仅能识别图像中的物体类别,还能精确地分割出每个实例的像素区域。FacebookAIResearch开发的Detectron2框架提供了高效的
- MySQL中的事务支持详解
事务支持是数据库管理系统(如MySQL)中确保数据完整性和一致性的核心功能。在MySQL中,只有部分存储引擎(如InnoDB)支持完整的事务功能。事务的基本概念事务(Transaction)是指作为单个逻辑工作单元执行的一系列操作,这些操作要么全部成功执行,要么全部不执行,保持数据库从一个一致状态转变为另一个一致状态。事务的四个关键特性(ACID)原子性(Atomicity):事务是不可分割的工作
- PM2使用
使用进程管理器PM2PM2是一个为Node.js应用设计的、带有负载均衡功能的生产环境进程管理器。用它来管理npx执行的命令是最佳实践。优点:✅进程守护:程序崩溃后会自动重启。✅开机自启:可以配置,让服务器重启后自动运行你的服务。✅日志管理:自动分割和管理日志,方便查看。✅性能监控:可以监控CPU和内存占用。✅跨平台:在Linux,macOS和Windows上都能用。操作步骤:1.全局安装PM2如
- AAAI 2024 | TMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer
小白学视觉
医学图像处理论文解读transformer深度学习人工智能AAAI论文解读计算机顶会
论文信息题目:TMFormer:TokenMergingTransformerforBrainTumorSegmentationwithMissingModalitiesTMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer作者:ZheyuZhang,GangYang,YueyiZhang,HuanjingYue,AipingLiu,YunweiOu,JianGong,Xiaoy
- 力扣-416.分割等和子集
题目链接416.分割等和子集classSolution{publicbooleancanPartition(int[]nums){intsum=0;for(inti=0;i=0;j--){if(j-nums[i]>=0){//更新dp[j]:比较不放入当前数字和放入当前数字两种情况dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);}}}returndp[tar
- 计算机视觉:少样本学习(Few-Shot Learning)在视觉中的应用
xcLeigh
计算机视觉CV计算机视觉学习人工智能FSLAI
计算机视觉:少样本学习(Few-ShotLearning)在视觉中的应用一、前言二、少样本学习基础概念2.1定义与范畴2.2与传统机器学习对比2.3核心挑战三、少样本学习在计算机视觉中的典型应用3.1图像分类3.1.1新类别识别3.1.2医学图像分类3.2目标检测3.2.1新目标检测3.2.2小目标检测3.3图像分割3.3.1医学图像分割3.3.2工业缺陷检测四、少样本学习在计算机视觉中的技术方法
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,