- 48. 旋转图像 - 力扣(LeetCode)
Fiee-77
#数组leetcode算法python数据结构数组
题目:给定一个n×n的二维矩阵matrix表示一个图像。请你将图像顺时针旋转90度。你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。示例1:输入:matrix=[[1,2,3],[4,5,6],[7,8,9]]输出:[[7,4,1],[8,5,2],[9,6,3]]示例2:输入:matrix=[[5,1,9,11],[2,4,8,10],[13,3,6,
- 力扣面试题07 - 旋转矩阵
茶猫_
leetcode矩阵算法c语言
题目:给你一幅由N×N矩阵表示的图像,其中每个像素的大小为4字节。请你设计一种算法,将图像旋转90度。不占用额外内存空间能否做到?示例1:给定matrix=[[1,2,3],[4,5,6],[7,8,9]],原地旋转输入矩阵,使其变为:[[7,4,1],[8,5,2],[9,6,3]]示例2:给定matrix=[[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,
- 5G基站信号加速器!AD8021ARZ-REEL7亚德诺 超低噪声高速电压放大器 专利失真消除技术!
深圳市尚想信息技术有限公司
5G通信高速运放ADI黑科技8K视频医疗超声
AD8021ARZ-REEL7ADI:重新定义高速放大器的性能极限!一、产品简介AD8021ARZ-REEL7是ADI(亚德诺半导体)推出的超低噪声高速电压反馈放大器,采用XFCB工艺和专利失真消除技术,专为4K/8K视频处理、医疗成像、5G通信等超高频应用设计。以1.8GHz带宽和0.1nV/√Hz超低噪声,成为高速信号调理的终极解决方案!二、五大颠覆性优势军工级信号保真度1.8GHz-3dB带
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- PDF转Markdown - Python 实现方案与代码
Eiceblue
PythonPythonPDFpdfpython开发语言vscode
PDF作为广泛使用的文档格式,转换为轻量级标记语言Markdown后,可无缝集成到技术文档、博客平台和版本控制系统中,提高内容的可编辑性和可访问性。本文将详细介绍如何使用国产Spire.PDFforPython库将PDF文档转换为Markdown格式。技术优势:精准保留原始文档结构(段落/列表/表格)完整提取文本和图像内容无需Adobe依赖的纯Python实现支持Linux/Windows/mac
- Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道python开发语言ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
- 如何学好图像处理——从小白到大神?
chentengkui
图像处理
如何学好图像处理——从小白到大神?标签:图像处理学习方法2016-02-2617:4818439人阅读评论(25)收藏举报分类:学习方法与方法论(13)版权声明:本文为博主原创文章,未经博主允许不得转载。什么是数字图像处理?历史、以及它所研究的内容。说起图像处理,你会想到什么?你是否真的了解这个领域所研究的内容。纵向来说,数字图像处理研究的历史相当悠久;横向来说,数字图像处理研究的话题相当广泛。数
- 显示硬件发展与视频开发系列(2)----2D时代
短视频技术
显示与视频技术gdi/gdi+图形学软件开发c++
3、2D时代几十年工艺改进,解决了基本制造问题,计算机开始向应用过渡。显示问题是首当其冲的问题,多年的思辨与实践,2D技术横空出世,完善发展,为计算机的应用推广做出了卓越的贡献。双色显示的星星之火,在2D时代终于熊熊燃烧,计算机走向民间的时代到来了。下面从公司产品的角度,回顾2D时代的图形图像编程。3.1、公司3.1.1、AmigaAmiga是80年代图形性能最强大的电脑之一,拥有专门处理图形的芯
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版)
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版))工业相机使用YoloV8模型实现不同水果的检测识别工业相机通过YoloV8模型实现不同水果的检测识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入Yo
- 相机ROI 参数
ZPC8210
视觉数码相机
相机的ROI(RegionofInterest,感兴趣区域)参数,是指通过设置图像传感器上特定区域作为有效成像区域,从而只采集该区域的图像数据,而忽略其他部分。这一功能常用于工业相机、科研相机、高速相机等场景,以提升帧率、降低数据量或实现特定区域的精细分析。ROI参数的核心要点作用提高帧率:减少处理的像素数量,降低数据带宽,使相机能以更高速度采集图像(例如:从30fps提升到100fps)。减少数
- 基于AlexNet架构的卷积神经网络模型用于对胸部X光图像进行二分类(例如,诊断肺炎)
1.肺炎正常的胸部X线片描绘了清晰的肺部,图像中没有任何异常混浊的区域。正常的胸部X线片1.1细菌性肺炎临床表现细菌性肺炎通常由细菌引起,如肺炎链球菌、流感嗜血杆菌、肺炎克雷伯菌等。患者可能出现高热、寒战、咳嗽、咳痰(痰液可能呈脓性)、胸痛、呼吸困难等症状。影像学特征局灶性肺叶实变细菌性肺炎在影像学上常表现为肺叶或肺段的局灶性实变,即某一区域的肺组织因炎症而失去气体交换功能,呈现为高密度影。胸腔积
- 多通道 ISP(双 ISP)并行处理机制解析:架构演进、资源调度与实战配置路径
观熵
影像技术全景图谱:架构调优与实战接口隔离原则架构影像Camera
多通道ISP(双ISP)并行处理机制解析:架构演进、资源调度与实战配置路径关键词:双ISP、并行图像处理、多Sensor管线、分布式调度、ISP平衡调度、帧同步、多路输入、SoC图像架构摘要:随着智能手机多摄系统的普及,传统单通道ISP架构已无法满足同时驱动多颗高分辨率摄像头、并发处理视频与拍照任务的性能需求。为此,各大SoC厂商纷纷引入“双ISP”或“多通道ISP”设计,用于提升吞吐能力、降低延
- 视觉Transformer还有哪些点可以研究?怎么应用?
计算机视觉工坊
3D视觉从入门到精通学习算法开源
0.这篇文章干了啥?今天笔者为大家推荐一篇最新的综述,详细总结了Transformer的网络架构、优化策略、发展方向,还会定期更新Github,研究注意力机制的小伙伴一定不要错过。注意机制有助于人类视觉系统有效地分析和理解复杂场景,它能够聚焦于图像的关键区域,同时忽略无关紧要的部分。受此概念启发,注意机制已经被引入到计算机视觉(CV)中,以动态地为图像中的不同区域分配权重。这使得神经网络能够专注于
- Halcon试用与许可指南:2022年7月版
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本文件提供了Halcon软件的试用证书和许可证相关资料的集合,为潜在用户提供免费体验Halcon各项功能的途径,包括图像处理、形状匹配、OCR和条形码读取等。用户可以通过试用版全面了解软件功能,评估是否符合项目需求,并指导如何正确管理和优化许可证使用,以符合预算和需求。1.Halcon软件概述在当今高度自动化的工业时代,机器视觉系统发挥着至关重要的作用。Hal
- LEADTOOLS 将一维和条形码读取图像 - Windows C DLL
sdk大全
LEADTOOLS23windowsc语言开发语言
将一维和条形码读取图像-WindowsCDLL本教程介绍如何使用WindowsCDLL应用程序中的LEADTOOLSSDK在加载的图像上写入一维和二维条形码信息。概述概括本教程介绍如何L_BarCodeWrite在WindowsCDLL应用程序中使用该函数。完成时间30分钟VisualStudio项目下载教程项目(19KB)平台WindowsCDLL应用程序集成开发环境VisualStudio20
- 手把手教你搭建AI搜图系统:基于BGE-VL+Milvus的完整实现指南
引言图像搜索有何价值?•帮你找身份证:在海量相册里搜索身份证•电商神器:淘宝"拍立淘"让你拍照变订单•设计师救星:3秒找到可商用的高清素材图老搜索vs新搜索的区别老搜索:像查字典,必须输入正确关键词新搜索:像跟人聊天,图片/语音都能搜,还能理解表情包为什么选BGE-VL+Milvus这个王炸组合?•就像给搜索引擎装了"人脑"(BGE-VL理解图片内涵)•加上"闪电手"Milvus(毫秒级匹配海量图
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- Matlab医学图像配准工具箱使用指南
远方之巅
本文还有配套的精品资源,点击获取简介:医学图像配准是一个关键的IT技术,特别是对于不同条件下的医学图像分析至关重要。’fordanic/image-registration’是一个Matlab工具箱,它提供了易于使用的接口和算法,助力研究人员和工程师高效准确地完成医学图像配准工作。工具箱内包含了多个示例脚本,详细演示了二维和三维空间中的图像配准步骤,包括图像预处理、特征检测、相似性度量、几何变换模
- AE音乐可视化模板:制作快速音乐视频
本文还有配套的精品资源,点击获取简介:AE音乐可视化模板旨在将音乐数据转化为视觉效果,包含预设动画和布局设计,使用户能够轻松制作节奏同步的音乐视频。关键编辑区包括音乐编辑、歌名、歌手、背景图片和专辑图片编辑区,以及用于总成预览的区域。这类模板通常适用于新手用户,通过简洁的编辑流程,用户可以利用丰富的视觉元素和动画效果快速创作。包含的项目文件、预设动画、图像和音频素材,以及使用指南,帮助用户顺利完成
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- RK3568平台(camera篇)opencv处理图像
嵌入式_笔记
瑞芯微opencv人工智能计算机视觉
一.颜色转换cv2.cvtColor()函数功能:将一幅图像从一个色彩空间转换到另一个色彩空间。函数原型:cv2.cvtColor(src,code,dst=None,dstCn=None)参数定义:src:要转换的源文件code,转换的色彩空间,在opencv中有超过150种颜色空间转换方法,但是经常用的只有BGR-灰度图和BGR-HSVBGR和灰度图的转换使用cv2.COLOR_BGR2GRA
- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- 如何从零开始入行机器学习
在当今的科技浪潮中,机器学习无疑是最耀眼的明星之一。它不仅引领了人工智能的发展,还在各个行业中催生了大量的创新和变革。对于那些对技术充满热情、渴望在这个领域有所作为的人来说,“如何从零开始入行机器学习”成为了最热门的话题之一。这不仅仅是技术上的挑战,更是一个职业生涯的新起点。想象一下,在未来的工作中,你能够开发出自动识别图像的应用程序,或者设计一个可以预测市场趋势的智能系统,这一切都源于你现在迈出
- 专业图片背景移除工具
开开心心_Every
ocr语音识别人工智能excelsymfony启发式算法宽度优先
软件介绍本文介绍一款具有智能抠图功能的图像处理工具,帮助用户快速完成图片背景分离操作。软件特性这款抠图工具提供绿色汉化版本,无需安装即可直接运行,操作界面简洁直观。使用方法用户只需将需要处理的图片文件拖拽至软件界面,系统即可自动识别并完成抠图操作,无需复杂设置。离线功能该工具支持离线使用模式,用户无需连接互联网即可完成图片抠图处理,保障隐私安全。这款工具还有许多功能,我就不一一介绍啦。以下为软件获
- 图像质量评价2
JXH_SHU
本次介绍的是2018CVPR另一篇图像质量评价的论文——BlindPredictingSimilarQualityMapforImageQualityAssessment。这篇采用的思路与之前那篇2018CVPR相近,同样是采用了质量图像生成的方法。这篇论文主要的特点是以全参考的相似图来作为生成网络的label,生成网络的结构采用了之前U-net架构,同时这篇论文还采用了一种集成的思想,即用多种的
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 深入解析MIPI C-PHY (四)C-PHY物理层对应的上层协议的深度解析
GateWorld
MIPICPHYMIPIMIPIDPHY高速接口
C-PHY物理层对应的上层协议的深度解析C-PHY上层协议全景图一、核心协议:CSI-2(CameraSerialInterface2)定位:图像传感器传输的行业金标准最新版本:CSI-2v4.0(2023)协作机制:C-PHY作为其物理层承载1.核心技术创新(C-PHY+CSI-2)技术痛点传统D-PHY方案C-PHY+CSI-2方案高分辨率带宽4K@60fps需8对数据线4K@120fps仅需
- 基于深度学习的图像分类:使用ShuffleNet实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘python目标检测
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。ShuffleNet是一种轻量级的深度学习架构,专为移动和嵌入式设备设计,能够在保持较高分类精度的同时,显著减少计算量和模型大小。本文将详细介绍如何使用ShuffleNet实现高效的图像分类,从理论基础到代码实现,带你一步步掌
- 《零基础入门AI:从图像梯度到凸包特征检测(OpenCV图像特征提取)》
竹子_23
OpenCV入门opencv人工智能计算机视觉
一、图像梯度处理:理解像素变化的本质1.1图像梯度基础图像梯度是计算机视觉中的核心概念,它描述了图像中像素强度的变化情况:梯度方向:像素值变化最剧烈的方向(垂直于边缘)梯度幅度:像素值变化的强度(值越大表示边缘越明显)物理意义:就像地形图中的等高线,梯度大的地方相当于陡坡,梯度小的地方相当于平地1.2垂直边缘提取垂直边缘是图像中物体左右边界形成的线条:特征:水平方向上像素值发生突变应用场景:文档扫
- 《零基础入门AI:OpenCV图像预处理进一步学习》
竹子_23
OpenCV入门opencv人工智能学习
本文全面讲解OpenCV图像预处理的七大核心技术(插值方法、边缘填充、图像矫正(透视变换)、图像掩膜、ROI切割、图像添加水印、图像噪点消除),每个知识点都配有详细解释和实用代码示例,帮助初学者建立系统的图像处理知识体系。一、插值方法:图像缩放的核心技术插值是在图像缩放或旋转时估算新像素值的方法,不同方法在速度和质量上有显著差异。1.最近邻插值原理:直接取最邻近像素的值特点:速度最快,但会产生锯齿
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod