Numpy
Numpy是python里面一个用于科学计算的库,它是大量数学和科学计算包的基础,例如pandas就会用到numpy。为了更好的学习python科学计算及数据分析,掌握numpy是非常必要的。
Numpy功能
Numpy基础
Ndarray
>>>import numpy as np #导入numpy
>>>a = [1,2,3,4,5,6] #创建一维数组
>>>b = np.array(a)
>>>print(b)
>[1,2,3,4,5,6]
>>>c = [[1,2,3],[4,5,6]] #创建多维数组
>>>d = np.array(c)
>>>print(d)
>[[1,2,3]
[4,5,6]]
>>>b = np.zeros((3,4),dtype=np.int32)
>>>print(b)
>[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]
>>>c = np.arange(1,8,2,dtype=np.int32).reshape((2,2))
>>>d = np.zeros_like(c)
>>>print(d)
>[[0 0]
[0 0]]
>>>b = np.ones((3,4),dtype=np.int64)
>>>print(b)
>[[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]
>>>c = np.arange(1,8,2,dtype=np.int32).reshape((2,2))
>>>d = np.ones_like(c)
>>>print(d)
>[[1 1]
[1 1]]
>>>b = np.empty((3,4))
>>>print(b)
>[[5.e-324 5.e-324 5.e-324 5.e-324]
[5.e-324 5.e-324 5.e-324 5.e-324]
[5.e-324 5.e-324 5.e-324 5.e-324]]
>>>c = np.arange(2,10,2,dtype=np.int32)
>>>print(c)
>[2 4 6 8]
>>>d = np.arange(1,8,2,dtype=np.int32).reshape((2,2))
>>>print(d)
>[[1 3]
[5 7]]
>>>b = np.linspace(1,20,10)
>>>print(b)
>[ 1. 3.11111111 5.22222222 7.33333333 9.44444444 11.55555556
13.66666667 15.77777778 17.88888889 20. ]
>>>b = np.logspace(1,20,10)
>>>print(b)
>[1.00000000e+01 1.29154967e+03 1.66810054e+05 2.15443469e+07
2.78255940e+09 3.59381366e+11 4.64158883e+13 5.99484250e+15
7.74263683e+17 1.00000000e+20]
>>>c = [1,2,3,4,5,6]
>>>b = np.asarray(c)
>>>print(b)
>>>print(type(b))
>[1 2 3 4 5 6]
<class 'numpy.ndarray'>
Ndarray的基本属性
>>>import numpy as np
>>>a = np.array([[1,2,3],[4,5,6]]) #创建数组
>>>print(a.ndim) #查看数组维度
>2
>>>print(a.shape) #查看数组形状大小
>(2,3)
>>>print(a.size) #查看数组元素个数
>6
>>>print(a.dtype) #查看数组元素类型
>int32
>>>print(type(a)) #查看数组类型
><class 'numpy.ndarray'>
>>>print(a.itemsize) #查看数组元素字节大小
>4
>>>print(a.data) #查看实际数组元素的缓冲区地址
><memory at 0x000001AEED4D8120>
>>>print(a.flat) #查看数组元素的迭代器
><numpy.flatiter object at 0x000001AEEC4F72F0>
Ndarray的数据类型
Ndarray存取元素
>>>x = np.arange(1,10,1)
>>>a = x[[2,4,6]]
>>>print(a)
>[3 5 7]
>>>b = x[x>5]
>>>print(b)
>[6 7 8 9]
还会继续更新numpy的更多操作哟!