利用Python爬取豆瓣电影TOP250并进行数据分析,对于众多爬虫爱好者,应该并不陌生。很多人都会以此作为第一个练手的小项目。当然这也多亏了豆瓣的包容,没有加以太多的反爬措施,对新手比较友好。
手动声明
版权声明:本文为博主原创文章,创作不易
本文链接:https://blog.csdn.net/qq_45176548/article/details/112735850
第一页:https://movie.douban.com/top250
第二页:https://movie.douban.com/top250?start=25&filter=
第三页:https://movie.douban.com/top250?start=50&filter=
观察可知,我们只需要修改start参数即可
推荐阅读:
headers中有很多字段,这些字段都有可能会被对方服务器拿过来进行判断是否为爬虫
1.1 通过headers中的User-Agent字段来反爬
1.2 通过referer字段或者是其他字段来反爬
1.3 通过cookie来反爬
请求参数的获取方法有很多,向服务器发送请求,很多时候需要携带请求参数,通常服务器端可以通过检查请求参数是否正确来判断是否为爬虫
2.1 通过从html静态文件中获取请求数据(github登录数据)
2.2 通过发送请求获取请求数据
2.3 通过js生成请求参数
2.4 通过验证码来反爬
在这里我们只需要添加请求头即可
这里我使用的是xpath
推荐阅读:
# -*- coding: utf-8 -*-
# @Author: Kun
import requests
from lxml import etree
import pandas as pd
df = []
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4343.0 Safari/537.36',
'Referer': 'https://movie.douban.com/top250'}
columns = ['排名','电影名称','导演','上映年份','制作国家','类型','评分','评价分数','短评']
def get_data(html):
xp = etree.HTML(html)
lis = xp.xpath('//*[@id="content"]/div/div[1]/ol/li')
for li in lis:
"""排名、标题、导演、演员、"""
ranks = li.xpath('div/div[1]/em/text()')
titles = li.xpath('div/div[2]/div[1]/a/span[1]/text()')
directors = li.xpath('div/div[2]/div[2]/p[1]/text()')[0].strip().replace("\xa0\xa0\xa0","\t").split("\t")
infos = li.xpath('div/div[2]/div[2]/p[1]/text()')[1].strip().replace('\xa0','').split('/')
dates,areas,genres = infos[0],infos[1],infos[2]
ratings = li.xpath('.//div[@class="star"]/span[2]/text()')[0]
scores = li.xpath('.//div[@class="star"]/span[4]/text()')[0][:-3]
quotes = li.xpath('.//p[@class="quote"]/span/text()')
for rank,title,director in zip(ranks,titles,directors):
if len(quotes) == 0:
quotes = None
else:
quotes = quotes[0]
df.append([rank,title,director,dates,areas,genres,ratings,scores,quotes])
d = pd.DataFrame(df,columns=columns)
d.to_excel('Top250.xlsx',index=False)
for i in range(0,251,25):
url = "https://movie.douban.com/top250?start={}&filter=".format(str(i))
res = requests.get(url,headers=headers)
html = res.text
get_data(html)
原文链接:https://blog.csdn.net/qq_45176548/article/details/112735850
结果如下:
原文链接
获取数据后,就可以对自己感兴趣的内容进行分析了
year = []
for i in df["上映年份"]:
i = i[0:4]
year.append(i)
df["上映年份"] = year
df["上映年份"].value_counts()
x1 = list(df["上映年份"].value_counts().sort_index().index)
y1 = list(df["上映年份"].value_counts().sort_index().values)
y1 = [str(i) for i in y1]
c1 = (
Bar()
.add_xaxis(x1)
.add_yaxis("影片数量", y1)
.set_global_opts(
title_opts=opts.TitleOpts(title="Top250年份分布"),
datazoom_opts=opts.DataZoomOpts(),
)
.render("1.html")
)
这里可以看出豆瓣电影TOP250里,电影的上映年份,多分布于80年代以后。其中有好几年是在10部及以上的。
plt.figure(figsize=(10,6))
plt.hist(list(df["评分"]),bins=8,facecolor="blue", edgecolor="black", alpha=0.7)
plt.show()
大多分布于「8.5」到「9.2」之间。最低「8.3」,最高「9.6」
plt.figure(figsize=(10,5), dpi=100)
plt.scatter(df.index,df['评分'])
plt.show()
c2 = (
Bar()
.add_xaxis(df1["电影名称"].to_list())
.add_yaxis("评论数", df1["评价分数"].to_list(),color=Faker.rand_color())
.reversal_axis()
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.set_global_opts(title_opts=opts.TitleOpts(title="电影评论Top10"))
.render("2.html")
)
from collections import Counter
colors = ' '.join([i for i in df[ '类型']]).strip().split()
c = dict(Counter(colors))
c
d = c.pop('1978(中国大陆)')
删除即可
方法一 pop(key[,default])
d = {
'a':1,'b':2,'c':3}
# 删除key值为'a'的元素,并赋值给变量e1
e1 = d.pop('a')
print(e1)
# 如果key不存在,则可以设置返回值
e2 = d.pop('m','404')
print(e2)
# 如果key不存在,不设置返回值就报错
e3 = d.pop('m')
方法二 del[d[key]]
d = {
'a':1,'b':2,'c':3}
# 删除给定key的元素
del d['a']
print(d)
# 删除不存在的元素
del d['m']
clear一次性删除所有字典元素
d = {
'a':1,'b':2,'c':3}
print(d)
# 删除所有元素,允许d为{}
d.clear()
print(d)
统计展示
c = (
WordCloud()
.add(
"",
words,
word_size_range=[20, 100],
textstyle_opts=opts.TextStyleOpts(font_family="cursive"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-自定义文字样式"))
.render("wordcloud_custom_font_style.html")
)
到这里就结束了,如果对你有帮助你,欢迎点赞关注,你的点赞对我很重要