- selenium特殊场景处理
Monica_ll
Seleniumseleniumchromepython
文章目录前言一、多窗口处理二、浏览器弹窗处理包含alert、confirm、prompt三、鼠标和键盘事件处理前言在使用selenium操作浏览器的过程中可能需要借助键盘和鼠标功能完成一些操作,或者操作弹窗处理,本文主要是整理自己工作过程中使用过的一些方法一、多窗口处理在实际测试过程中经常会有通过点击或者连接打开新的窗口,这种情况下就需要切换webDriver到对应浏览器对象才能操作新窗口的元素。
- 查看自己电脑安装了wsl
Jiang_Immortals
各平台开源项目python
要查看自己的电脑是否安装了WSL(WindowsSubsystemforLinux),可以按照以下步骤进行:打开WindowsPowerShell或命令提示符(CommandPrompt)。输入以下命令并按回车键执行:wsl--list--verbose等待一段时间,系统会列出已安装的WSL发行版。如果没有任何输出或返回错误消息,则表示未安装WSL。如果您已经安装了WSL,输出将包含已安装的发行版
- 从0搭建到持续优化:提示工程架构师的评估体系迭代全流程
从0搭建到持续优化:提示工程架构师的评估体系迭代全流程引言:AI时代的关键角色与评估挑战在人工智能技术迅猛发展的今天,提示工程(PromptEngineering)已从一个小众技能演变为决定AI系统成败的核心能力。随着大语言模型(LLM)能力的不断增强,提示工程架构师(PromptEngineeringArchitect)作为一个新兴职业应运而生,成为连接业务需求与AI能力的关键桥梁。为什么提示工
- !LangChain代理决策架构与源码深度剖析(75)
LangChain代理决策架构与源码深度剖析一、LangChain代理决策架构概述1.1代理决策架构的核心组件LangChain代理的决策架构是其智能交互的核心,主要由大语言模型(LLM)、工具集(Tools)、提示模板(PromptTemplate)、规划器(Planner)、执行器(Executor)和反馈机制六大组件构成。这些组件通过协同工作,实现从用户输入解析到最终结果输出的完整决策流程。
- Python面向对象编程入门:从类与对象到方法与属性
吴师兄大模型
python人工智能面向对象编程开发语言类对象PYTHON
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Java AI面试实战:Spring AI与RAG技术落地
GEM的左耳返
Java场景面试宝典Java面试SpringAIRAG向量数据库AI应用Prompt工程
JavaAI面试实战:SpringAI与RAG技术落地面试现场:AI技术终面室面试官:谢飞机同学,今天我们聚焦JavaAI应用开发,重点考察SpringAI和RAG技术栈。谢飞机:(兴奋地)面试官好!我可是AI达人!ChatGPT、Midjourney我天天用,SpringAI这新框架我也研究过!第一轮:SpringAI基础面试官:请详细描述SpringAI的核心组件及PromptTemplate
- LangChain:大模型时代的开发利器
tanak
Python大模型应用全栈实战langchain人工智能python
文章目录什么是LangChain?深入解析其核心理念与组件1.模型(Models)2.提示(Prompts)3.链(Chains)4.索引(Indexes)5.记忆(Memory)6.工具(Tools)7.代理(Agents)LangChain在大模型应用中的核心地位与典型场景核心地位:连接、抽象、赋能典型应用场景:LangChain如何赋能实际业务结语:拥抱LangChain,构建大模型应用的未
- ImportError: cannot import name ‘create_prompt_application‘ from ‘prompt_toolkit.shortcuts‘解决方案
weixin_43178406
Python基础课程
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:cannot
- 为什么说大模型才有泛化能力?小模型做不到的事,提示词也救不了
之之为知知
12大模型人工智能机器学习深度学习大模型小模型模型微调
你有没有发现,同样是人工智能模型,有的只能回答特定问题,而有的却能写诗、写代码、讲道理,甚至还能帮你设计产品方案?比如:小模型可能只会识别“猫”和“狗”,但大模型却能解释“为什么猫喜欢钻纸箱”;小模型可能只能回答“北京的天气怎么样”,但大模型却能分析“如果我要去北京旅游,应该带什么衣服”。很多人以为,只要给小模型加上好的提示词(Prompt),它也能像大模型一样聪明。但事实真的如此吗?这篇文章就来
- 在线重定义 online redefinition
ThefollowingexampledemonstratesonlineredefinitionwithFILE_DATASTOREandresizingatextcolumnprompt>echo"HelloWorld">/home/oracle/world.txtprompt>echo"HelloOracle">/home/oracle/oracle.txtprompt>echo"Hello
- ANACONDA更改PYTHON版本
#如何在anaconda下改变python的版本#进入anacondaprompt#进入控制台termi也可以#condacreate-npy36python=3.6.8#创建虚拟环境#py36是名字#3.6.8是版本
- Prompt Engineering(提示词工程)基础了解
Fuly1024
LLMprompt
参考:https://blog.csdn.net/qq_56438555/article/details/1448865171.基础概念:提示词工程(promptEngineering)是指通过设计、优化输入给大语言模型的文本指令(即“提示词”),引导LLM输出我们期望的结果。让大模型在无需微调(Fine-tuning)的情况下,通过“更好的提问方式”完成复杂任务(开发潜力,不会的还是不会)。但是
- 【大模型实战】提示工程(Prompt Engineering)
喵王叭
AIprompt
文章目录前言一、五大核心原则二、基础技巧1.明确指令与输出2.赋予角色三、进阶技巧1.少样本提示2.思维链提示3.控制输出长度与格式四、迭代与优化:提升提示效果的关键五、提示⼯程最佳实践总结附言前言提示工程是通过优化输入指令(提示词),让AI模型更精准、高效地输出符合需求结果的技术方法。一、五大核心原则清晰明确:避免模糊表述,用具体信息(如“新上市”)替代抽象词汇,精准传递意图。提供上下文:补充背
- 【Python-Day 35】深入理解多态:代码更灵活的“鸭子类型”魔法
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习-Day 39】玩转迁移学习与模型微调:站在巨人的肩膀上
吴师兄大模型
深度学习入门到精通深度学习迁移学习人工智能python大模型机器学习模型微调
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- gig-gitignore工具实战开发(三):gig add基础实现
叹一曲当时只道是寻常
gigai人工智能go
gig-gitignore工具实战开发(三):gigadd基础实现✨前言:在上一篇我们已经设计了多源模板系统,本篇我们来进行实战。先实现gigadd命令基础代码。一、项目初始化暂略,主要包含如下工作gomodinit项目初始化添加cobra、viper等相关库配置初始化等等参考依赖require(github.com/manifoldco/promptuiv0.9.0github.com/nick
- 大模型的安全风险全解:Prompt Injection、信息泄露与幻觉问题
代码AI弗森
AI人工智能机器学习深度学习
“大模型是聪明的,但它也可能是个会胡说八道的‘熊孩子’。”自从ChatGPT点燃LLM的星火,生成式AI就成了工具箱里的瑞士军刀——写文档、写代码、做分析、开玩笑它都行。但当你把它真正嵌入产品,尤其是企业级应用时,三个问题就像幽灵一样悄悄飘来:PromptInjection(提示注入攻击)️♂️信息泄露(SensitiveLeakage)幻觉现象(Hallucination)它们听起来高大上,实
- 大模型——Prompt 优化还是模型微调
Prompt优化还是模型微调在人工智能飞速发展的当下,大语言模型(LLM)已成为众多领域的关键技术支撑。无论是在智能客服、内容创作,还是数据分析等场景中,LLM都展现出了强大的能力。但在实际应用中,如何让LLM更好地满足特定需求,成为了开发者和企业面临的重要问题。Prompt优化和模型微调作为提升LLM性能的两种主要方式,各有优劣,选择合适的方法对于实现高效、精准的AI应用至关重要。Prompt优
- AI大模型各类概念扫盲
Sao_E
人工智能
以下内容整理自AI,进行一个概念扫盲:Prompt(提示词)Prompt是用户提供给AI模型的指令或问题,用于引导模型生成特定输出。良好的Prompt设计能显著提升模型的任务理解能力和响应质量,例如通过结构化提示(Few-shotPrompting)让模型学习上下文中的示例,或使用思维链(Chain-of-Thought)提示引导模型分步推理。在Agent开发中,Prompt是控制行为的第一环,直
- langchain四种内置链的使用
努力学习agent
langchainlangchain
#四种基础内置链的介绍与使用#LLMChain最常用的链式fromlangchain.chainsimportLLMChainfromlangchain.llmsimportOpenAIfromlangchain.promptsimportPromptTemplatellm=OpenAI(temperature=0)prompt_template="帮我给{product}想三个可以注册的域名"l
- 大语言模型提示工程全攻略:从零样本到 ReAct,一篇吃透
冻感糕人~
语言模型react.js人工智能大模型应用langchain大模型产品经理
提示词(Prompt)是与大语言模型沟通的关键。无论你是在用ChatGPT,还是开发LLM应用,只有写出清晰、高效的提示词,模型才能真正“听懂你在说什么”。提示工程(PromptEngineering)是一门设计高质量提示词的技巧与方法。通过巧妙地提示词设计,可以显著提升大语言模型的输出效果——让它回应得更准确、更连贯、更有创意,也更贴合你的实际需求。在这篇文章中,我将与你分享一些实用且经过验证的
- 【Go语言-Day 24】从混乱到有序:Go 语言包 (Package) 管理实战指南
吴师兄大模型
Go语言从入门到精通golang开发语言后端go语言人工智能python大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【JavaScript-Day 7】全面解析 Number 与 String:JS 数据核心操作指南
吴师兄大模型
javascript开发语言java前端后端人工智能LLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习-Day 10】机器学习基石:从零入门线性回归与逻辑回归
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 基于Prompt 的DevOps 与终端重塑
旧曲重听1
promptdevops人工智能
本文整理自WarpCEO扎克·洛伊德过去,DevOps工程师把大量时间花在「拧螺丝」:写脚本、配环境、查日志、排故障。现在,只需一句自然语言提示,代理就能接手这些重复步骤——工程师从「执行者」变成「指挥者」。但指挥者仍然需要一个指挥台:命令行。命令行:等待进化的「老伙计」·优点:直接、精确、系统级权限,仍是部署、排障、自动化的黄金标准。·缺点:–不懂「意图」:它只知道指令,不知道“为什么要这么干”
- conda安装geemap
Prophet.Z
geemapGEEcondapython深度学习
打个卡,开始学习使用geemap网址:http://geemap.org/installation/conda安装geemap:打开Anacondaprompt终端,输入:condainstallgeemap-cconda-forge吴秋生老师建议创建一个新的conda环境来安装geemap。安装以下命令设置condaenv并按照geemap和pygis,其中包括geemap的所有可选的安装包。c
- AI Agent开发学习系列 - langchain之示例选择器2:相关性与多样性兼得-MaxMarginalRelevanceExampleSelector在LangChain中的用法
alex100
AIAgent学习人工智能langchainprompt语言模型python
MaxMarginalRelevanceExampleSelectorMaxMarginalRelevanceExampleSelector是LangChain中用于Few-ShotPrompt的一种智能示例选择器。它的作用是:在众多示例中,自动选择与当前输入最相关、同时彼此多样性最大的示例,插入到prompt里。主要特点相关性优先:优先选择与用户输入最相似的示例。多样性保证:避免选到内容高度重复
- 【大模型记忆实战Demo】基于SpringAIAlibaba通过内存和Redis两种方式实现多轮记忆对话
Sao_E
redis数据库缓存ai语言模型
文章目录多轮对话记忆管理——基于Memory的对话记忆基于内存存储历史对话基于Redis存储历史对话多轮对话记忆管理——基于Memory的对话记忆SpringAIAlibaba共实现了三种方式:基于内存的方式基于jdbc(数据库)的方式基于redis的方式下文主要演示基于内存和redis的方式基于内存存储历史对话代码首先定义大模型的角色,一个旅游规划师设置增强拦截器接着接口传入prompt和cha
- PD分离技术分析
老兵发新帖
人工智能
PD分离中的“PD”指的是大语言模型(LLM)推理过程中的两个核心阶段:Prefill(预填充)和Decode(解码)。这两个阶段在计算特性和资源需求上存在显著差异,分离部署可优化整体性能。以下是详细解析:一、PD的具体含义Prefill(预填充阶段)任务:处理用户输入的整个提示(Prompt),为所有Token生成初始的键值缓存(KVCache)和隐藏状态(HiddenStates)。特性:计算
- Python FastMCP:让你的AI工具链飞起来
PythonFastMCP:让你的AI工具链飞起来FastMCPFastMCP是什么?1.工具(Tools):赋予LLM执行能力2.Resources(资源):安全数据通道3.Prompts(提示模板):标准化LLM交互4.组件协同:构建项目AI工具链5.部署架构与性能优化博主热门文章推荐:官方文档:FastMCP官方文档:https://gofastmcp.com/MCP协议规范:https:/
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比