- Dijkstra算法求最短路径问题
Dijkstra算法求最短路径问题——HM图论中最常见的问题就应是最短路径问题了,解决这一问题的几个基本算法有三个:Floyed、Dijkstra和SPFA了。现在我来浅谈一下Dijkstra的思想与实现。单纯的Dijkstra并不是很快,算一个点到其余各点的时间复杂度是O(n^2)级别,算每个点到其余各点的复杂度就是O(n^3)了,在提高组竞赛中不占优势,但其进行优化后便很强大了,如用堆优化Di
- 图论篇--代码随想录算法训练营第五十九天打卡|Bellman_ford 算法精讲,SPFA算法,Bellman ford之判断负权回路,Bellman ford之单源有限最短路
無量空所
leetcode算法图论c++
本系列算法用来解决有负权边的情况Bellman_ford算法精讲题目链接:94.城市间货物运输I题目描述:某国为促进城市间经济交流,决定对货物运输提供补贴。共有n个编号为1到n的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本-政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用
- 最小费用最大流算法
Da_秀
CCFCSP题库训练CSP信奥赛知识点讲解算法开发语言数据结构动态规划图论c++
最小费用最大流算法原理问题:网络中有源点(起点)和汇点(终点),每条边有流量上限和单位流量费用。求:从源点到汇点的最大流量在流量最大的前提下,总费用最小核心思想:在找增广路时,选择单位费用之和最小的路径(使用SPFA找最短路)实现步骤建图:使用链式前向星存储(含反向边)正向边:容量cap,费用cost反向边:容量0,费用-cost算法流程:Step1:用SPFA找费用最短路(记录路径和最小流量)S
- Dijkstra算法进阶:如何处理负权边问题?
数据结构与算法学习
算法网络服务器ai
Dijkstra算法进阶:如何处理负权边问题?关键词:Dijkstra算法、负权边、最短路径、Bellman-Ford算法、SPFA算法摘要:Dijkstra算法是求解单源最短路径的经典算法,但它有一个“致命短板”——无法处理包含负权边的图。本文将从Dijkstra算法的底层逻辑出发,用“快递员送外卖”的生活案例解释负权边为何会让Dijkstra失效;接着拆解Bellman-Ford、SPFA等能
- 网工实验——OSPF配置
鸡哥爱技术
智能路由器网络
网络拓扑图配置1.为每个路由器配置接口(略)(详细见RIP实验)2.配置OSPFAR1[AR1]ospf[AR1-ospf-1]area1[AR1-ospf-1-area-0.0.0.1]network172.16.1.10.0.0.0#精确配置网络,也可以像下面那条命令那样配置[AR1-ospf-1-area-0.0.0.1]network192.168.1.00.0.0.255AR2[AR2]
- OSPF的拓展配置
古德赖可可
HCIP知识小记网络
OSPF的拓展配置1.OSPF的手工认证1.接口认证intg0/0/0ospfauthentication-modemd51cipher123456//123456:你自己配置的密码cipher:密文展示plain:明文显示2.区域认证----针对区域内的所有接口做接口认证[r2-ospf-1-area-0.0.0.0]authentication-modemd51cipher1234563.虚链
- Bellman-ford算法
可可亚
图论算法图论bellman–fordalgorithm
Bellman-ford算法解决的问题思路模版特定问题解决的问题最短路问题,时间复杂度为O(n∗m)O(n*m)O(n∗m),可以有负权边,一般情况下都是SPFA算法更加优越,一般只有一种情况下必须使用Bellman-ford算法,那就是限制到最小距离的边数k,其他情况下一般SPFA算法更加适用。思路对每条边都进行松弛操作n-1次,一点能实现最短路。松弛:例如一条边a->b,权值为w,那么dist
- Bellman-Ford算法,Bellman-Ford队列优化(SPFA)
hide_on-BUSh
算法数据结构
Bellman-Ford算法能解决负权的问题但不能解决负权回路的问题但是Bellman-Ford可以判断是否可以存在负环,同样的SPFA也可以判断负环的存在。Bellman-Ford主要是将每个点每一次都松弛while(b){b=false;for(inti=1;iq;intspfa(ints,intt){memset(vis,0,sizeof(vis));memset(dis,0x3f,size
- 算法笔记.spfa算法(bellman-ford算法的改进)
xin007hoyo
算法笔记数据结构
题目:(来源于AcWing)给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出格式输出一个整数,表示1号点到n号点的最短距离。如果路径不存在,则输出i
- 信息学奥赛一本通 1504:【例 1】Word Rings | 洛谷 SP2885 WORDRING - Word Rings
君义_noip
信息学奥赛一本通题解洛谷题解信息学奥赛C++图论算法
【题目链接】ybt1504:【例1】WordRings洛谷SP2885WORDRING-WordRings【题目考点】1.图论:SPFA_DFS判断负环SPFA_DFS算法Bellman-Ford算法栈优化,也称SPFA_DFS算法。主要用于寻找图中是否存在负环或正环。以判断负环为例:将dis数组每个元素初值设为0尝试从每个顶点出发调用SPFA_DFS算法。如果访问到还在搜索过程中(在栈内)的顶点
- 【图论】bellman-ford 算法 + spfa 算法(基于队列优化)单源最短路(code c++)
idiot5liev
图论算法图论bellman–fordalgorithmc++spfa链式前向星
目录&索引一、前言题目二、算法原理bellman-ford、spfa算法关系spfa算法通俗介绍三、程序代码朴素bellman-fordcodec++spfacodec++四、结论一、前言图为点和边的集合边方向->有向无向边边权值->是否有负权边以及边是否成环,对点来说的出入度存图方式邻接矩阵邻接表链式前向星最短路径算法floyd——多源,时间复杂度O(n^3)dijkstra——单源,推荐因为快
- 算法系列——四种最短路算法:Floyd,Dijkstra,Bellman-Ford,SPFA
ITString
经验之谈java算法数据结构
写在前面:好久没有更新博客了,距离上一次更新已经过去了十一个月了,一是因为课业繁重,二是因为这一年中接了不少项目。其实早就想写写算法和数据结构相关的文章了,之前在Coders群里也说过17年要多写写算法和数据结构,奈何计划赶不上变化,实在是没有工夫写。现在到了18年了,最近刚放寒假,数据科学导论实验今天交上了最后一个,总算是有些闲工夫了,准备写些东西却又不知道应该写什么,算法那么多,从哪个写起呢?
- NO.95十六届蓝桥杯备战|图论基础-单源最短路|负环|BF判断负环|SPFA判断负环|邮递员送信|采购特价产品|拉近距离|最短路计数(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯图论c++
P3385【模板】负环-洛谷如果图中存在负环,那么有可能不存在最短路。BF算法判断负环执⾏n轮松弛操作,如果第n轮还存在松弛操作,那么就有负环。#includeusingnamespacestd;constintN=2e3+10,M=3e3+10;intn,m;intpos;structnode{intu,v,w;}e[M*2];intdist[N];boolbf(){//初始化memset(di
- 图论学习笔记(4):Bellman-ford算法和SPFA算法
sml259(劳改版)
算法数据库SPFABellman-ford
声明:这里简单聊聊我们Bellman-ford算法的思路,我也查了一些资料来进行辅助了解,我们主要掌握SPFA算法的思现,因为我们Bellman-ford算法的时间复杂度是稳定的O(VE)(其中V是顶点个数,E是边的个数),在大多数算法题目里这个时间复杂度已经很大了(打XCPC应该O(n^2)左右几乎都会卡)。而我们的SPFA算法平均情况下的时间复杂度是O(kE)(k是一个小于2的数),所以在大多
- 数学建模--图论与最短路径
不到w粉不改名
数学建模图论最短路径DijkstraFloyd算法Bellman-FordSPFA
目录图论与最短路径问题最短路径问题定义常用的最短路径算法Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法应用实例结论延伸如何在实际应用中优化Dijkstra算法以提高效率?数据结构优化:边的优化:并行计算:稀疏矩阵和向量运算:代码优化:Floyd算法在处理多源最短路径问题时的具体实现步骤是什么?Bellman-Ford算法如何检测并处理负权边的图中的负环?SPFA算法与B
- (代码随想录)BEllman_ford算法 及其优化 SPFA
cq.gi
算法
代码随想录(知识提炼)Bellman_ford算法用处解决带负权值的单源最短路问题核心思想对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。何为松弛minDist[B]表示到达B节点最小权值,minDist[B]有哪些状态可以推出来?状态一:minDist[A]+value可以推出minDist[B]状态二:minDist[B]本身就有权值(可能是其他边链接的节点B例如节点C,以至
- 最短路径--SPFA算法
OYangxf
数据结构与算法算法图论数据结构
SPFA算法的引入实际上,SPFA算法其实是对Bellman-Ford算法的优化,它通过队列这种数据结构,使得在松弛操作时不会去遍历无关的边。SPFA算法的代码实现#include#include#includeusingnamespacestd;typedefpairPII;intn,m,cnt;intdis[105];intvis[105];ints;inthead[105];intuse[1
- 探索域名安全新境界:checkdmarc深度解析与应用推荐
幸竹任
探索域名安全新境界:checkdmarc深度解析与应用推荐checkdmarcAparserforSPFandDMARCDNSrecords项目地址:https://gitcode.com/gh_mirrors/ch/checkdmarc在数字化时代,电子邮件的安全性成为了企业及个人网络防护的重要一环。SPF(SenderPolicyFramework)、DMARC(Domain-basedMes
- 常见算法模板(python)
雨拾
python算法深度优先
常见算法模板(python)二分搜索(实数搜索、整数搜索)前缀和、差分数组深度优先搜索DFS宽度优先搜索BFS并查集树状数组线段树稀疏表动态规划(矩阵)快速幂字符串匹配算法-KMPFloyd算法Dijkstra算法Bellman-Ford算法SPFA算法Prim算法Kruskal算法二分搜索(实数搜索、整数搜索)#-*-coding:utf-8-*-#@Author:BYW-yuwei#@Soft
- 代码随想录第六十天| Bellman_ford 队列优化算法(又名SPFA) bellman_ford之判断负权回路 bellman_ford之单源有限最短路
kill bert
代码随想录算法训练营算法
Bellman-Ford队列优化算法(SPFA)精讲题目描述某国共有n个城市,通过m条单向道路连接。每条道路的权值为运输成本减去政府补贴。要求找出从城市1到城市n的最低运输成本路径,若成本为负则表示盈利,若无路径则输出“unconnected”。输入包含n和m,接着m行每行三个整数s、t、v,表示从s到t的道路权值为v。输出为最低成本或“unconnected”。输入输出示例输入:6756-212
- 图论--最短路算法
Dream_Maker_yangkai
c++图论算法知识点总结和梳理图论
图论–最短路算法–yangkai在解决最短路问题时,优秀的最短路算法是必不可少的工具在这里介绍几种实用的算法1Floyd2Dijkstra算法3Dijkstra+堆优化4Bellman-Ford5SPFA(ShortestPathFasterAlgorithm)0图的储存方式边目录(记下来,仅此而已)邻接矩阵(适合稠密图)邻接表(适合稀疏图)链式前向星(万能):从每一个点把与之相连的边拉成一条链用
- 图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)
HX_2022
数据结构与算法数据结构算法图论
图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)1、图论最短路径概述图论算法为了求解一个顶点到另一个顶点的最短路径,即如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径,使得沿此路径各边上的权值总和(即从源点到终点的距离)达到最小,这条路径称为最短路径(shortestpath)。最短路径有很多特殊的情况,包括有向图还是
- 代码随想录算法训练营第六十五天| 图论10
Rachela_z
算法图论
Bellman_ford队列优化算法(又名SPFA)代码随想录importcollectionsdefmain():n,m=map(int,input().strip().split())edges=[[]for_inrange(n+1)]for_inrange(m):src,dest,weight=map(int,input().strip().split())edges[src].append
- P10948 升降梯上 灰 题解
M_CI_
算法
Part0.前言没想到SPFA-SLF冲进了最优解第一版,比多数Dijkstra还快。评测记录(SPFA-SLF43ms)评测记录(Dijkstra44ms)Part1.题意简述有MMM个移动系数−Nusingnamespacestd;#defineintlonglong#definepiipair#definefifirst#definesesecondintn,m,s,c[30],dis[10
- Day60 图论part10
2401_83448199
图论
今天大家会感受到Bellman_ford算法系列在不同场景下的应用。建议依然是:一刷的时候,能理解原理,知道Bellman_ford解决不同场景的问题,照着代码随想录能抄下来代码就好,就算达标。二刷的时候自己尝试独立去写,三刷的时候才能有一定深度理解各个最短路算法。Bellman_ford队列优化算法(又名SPFA)代码随想录importjava.util.*;publicclassMain{pu
- 单源最短路径
陵易居士
数据结构与算法算法图论
目录无负权单源最短路径迪杰斯特拉算法(dijkstra)朴素版迪杰斯特拉小根堆优化版本dijkstra有负权的图的单源最短路径SPFA总结无负权单源最短路径在处理图论相关问题时,经常会遇到求一点到其他点的最短距离是多少的问题,很多实际应用场景的题目也可以转化成求最短路的问题,这里我们先来了解没有负权的图的最短路问题.迪杰斯特拉算法(dijkstra)迪杰斯特拉算法是由dijkstra提出的,它的主
- 【noip2009】最优贸易 tarjan+拓扑+dp或spfa
anantheparty
noip图论动态规划拓扑spfanoipspfatarjan拓扑排序dp
描述C国有n个大城市和m条道路,每条道路连接这n个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这m条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为1条。C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。商人阿龙来到C国旅游。当他得知同一种商品
- 小结:路由引入问题
flying robot
HCIA/HCIP笔记
在华为路由器中,路由引入(RouteRedistribution)是实现不同路由协议间通信的关键技术。通过路由引入,可以将一种路由协议学习到的路由信息分发到另一种协议中,实现多协议网络的互通。以下是华为路由器不同协议间路由引入的总结:默认优先级直接连接路由(Direct):0OSPF:10IS-IS:15静态路由(Static):60RIP:100OSPFASE(OSPFAutonomousSys
- acwing搜索与图论(二)spfa
一缕叶
算法图论算法
#include#include#include#includeusingnamespacestd;typedefpairPII;constintN=10010;intn,m;inth[N],e[N],ne[N],w[N],idx;intdist[N];boolst[N];voidadd(inta,intb,intc){e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx
- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts