深度学习吴恩达作业题系列(7)

1、卷积神经网络

import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
def load_dataset():
    train_dataset = h5py.File('datasets/train_signs.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
    test_dataset = h5py.File('datasets/test_signs.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
    """
    Creates a list of random minibatches from (X, Y)
    Arguments:
    X -- input data, of shape (input size, number of examples) (m, Hi, Wi, Ci)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) (m, n_y)
    mini_batch_size - size of the mini-batches, integer
    seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
    Returns:
    mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
    """
    m = X.shape[0]                  # number of training examples
    mini_batches = []
    np.random.seed(seed)
    # Step 1: Shuffle (X, Y)
    permutation = list(np.random.permutation(m))
    shuffled_X = X[permutation,:,:,:]
    shuffled_Y = Y[permutation,:]
    # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
    num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
    for k in range(0, num_complete_minibatches):
        mini_batch_X = shuffled_X[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:,:,:]
        mini_batch_Y = shuffled_Y[k * mini_batch_size : k * mini_batch_size + mini_batch_size,:]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    # Handling the end case (last mini-batch < mini_batch_size)
    if m % mini_batch_size != 0:
        mini_batch_X = shuffled_X[num_complete_minibatches * mini_batch_size : m,:,:,:]
        mini_batch_Y = shuffled_Y[num_complete_minibatches * mini_batch_size : m,:]
        mini_batch = (mini_batch_X, mini_batch_Y)
        mini_batches.append(mini_batch)
    return mini_batches
def convert_to_one_hot(Y, C):
    Y = np.eye(C)[Y.reshape(-1)].T
    return Y
def forward_propagation_for_predict(X, parameters):
    """
    Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
    Arguments:
    X -- input dataset placeholder, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
                  the shapes are given in initialize_parameters
    Returns:
    Z3 -- the output of the last LINEAR unit
    """
    # Retrieve the parameters from the dictionary "parameters" 
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    W3 = parameters['W3']
    b3 = parameters['b3'] 
                                                           # Numpy Equivalents:
    Z1 = tf.add(tf.matmul(W1, X), b1)                      # Z1 = np.dot(W1, X) + b1
    A1 = tf.nn.relu(Z1)                                    # A1 = relu(Z1)
    Z2 = tf.add(tf.matmul(W2, A1), b2)                     # Z2 = np.dot(W2, a1) + b2
    A2 = tf.nn.relu(Z2)                                    # A2 = relu(Z2)
    Z3 = tf.add(tf.matmul(W3, A2), b3)                     # Z3 = np.dot(W3,Z2) + b3
    return Z3
def predict(X, parameters):
    W1 = tf.convert_to_tensor(parameters["W1"])
    b1 = tf.convert_to_tensor(parameters["b1"])
    W2 = tf.convert_to_tensor(parameters["W2"])
    b2 = tf.convert_to_tensor(parameters["b2"])
    W3 = tf.convert_to_tensor(parameters["W3"])
    b3 = tf.convert_to_tensor(parameters["b3"])
    params = {
     "W1": W1,
              "b1": b1,
              "W2": W2,
              "b2": b2,
              "W3": W3,
              "b3": b3}
    x = tf.placeholder("float", [12288, 1])
    z3 = forward_propagation_for_predict(x, params)
    p = tf.argmax(z3)
    sess = tf.Session()
    prediction = sess.run(p, feed_dict = {
     x: X})
    return prediction

1.1包的导入

深度学习吴恩达作业题系列(7)_第1张图片

1.2Zero-Padding

零填充会在图像边框周围添加零。通过调用以下函数。
在这里插入图片描述
深度学习吴恩达作业题系列(7)_第2张图片
在这里插入图片描述
深度学习吴恩达作业题系列(7)_第3张图片
深度学习吴恩达作业题系列(7)_第4张图片

1.3单层卷积网络

主要计算9个格子的和,也就是卷积神经网络的一小步。
深度学习吴恩达作业题系列(7)_第5张图片
深度学习吴恩达作业题系列(7)_第6张图片
深度学习吴恩达作业题系列(7)_第7张图片

1.4卷积神经网络-前向通过

深度学习吴恩达作业题系列(7)_第8张图片
深度学习吴恩达作业题系列(7)_第9张图片
深度学习吴恩达作业题系列(7)_第10张图片
深度学习吴恩达作业题系列(7)_第11张图片

1.5池化层

深度学习吴恩达作业题系列(7)_第12张图片
深度学习吴恩达作业题系列(7)_第13张图片

1.6卷积神经网络中的反向传播(OPTIONAL / UNGRADED)

1.6.1卷积神经网络后向传播

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
深度学习吴恩达作业题系列(7)_第14张图片
深度学习吴恩达作业题系列(7)_第15张图片

1.6.2池化层后向传播

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
深度学习吴恩达作业题系列(7)_第16张图片
深度学习吴恩达作业题系列(7)_第17张图片

你可能感兴趣的:(#,深度学习吴恩达,神经网络,网络,深度学习,卷积)