- 48. 旋转图像 - 力扣(LeetCode)
Fiee-77
#数组leetcode算法python数据结构数组
题目:给定一个n×n的二维矩阵matrix表示一个图像。请你将图像顺时针旋转90度。你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。示例1:输入:matrix=[[1,2,3],[4,5,6],[7,8,9]]输出:[[7,4,1],[8,5,2],[9,6,3]]示例2:输入:matrix=[[5,1,9,11],[2,4,8,10],[13,3,6,
- 力扣面试题07 - 旋转矩阵
茶猫_
leetcode矩阵算法c语言
题目:给你一幅由N×N矩阵表示的图像,其中每个像素的大小为4字节。请你设计一种算法,将图像旋转90度。不占用额外内存空间能否做到?示例1:给定matrix=[[1,2,3],[4,5,6],[7,8,9]],原地旋转输入矩阵,使其变为:[[7,4,1],[8,5,2],[9,6,3]]示例2:给定matrix=[[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- PDF转Markdown - Python 实现方案与代码
Eiceblue
PythonPythonPDFpdfpython开发语言vscode
PDF作为广泛使用的文档格式,转换为轻量级标记语言Markdown后,可无缝集成到技术文档、博客平台和版本控制系统中,提高内容的可编辑性和可访问性。本文将详细介绍如何使用国产Spire.PDFforPython库将PDF文档转换为Markdown格式。技术优势:精准保留原始文档结构(段落/列表/表格)完整提取文本和图像内容无需Adobe依赖的纯Python实现支持Linux/Windows/mac
- Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道python开发语言ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
- 如何学好图像处理——从小白到大神?
chentengkui
图像处理
如何学好图像处理——从小白到大神?标签:图像处理学习方法2016-02-2617:4818439人阅读评论(25)收藏举报分类:学习方法与方法论(13)版权声明:本文为博主原创文章,未经博主允许不得转载。什么是数字图像处理?历史、以及它所研究的内容。说起图像处理,你会想到什么?你是否真的了解这个领域所研究的内容。纵向来说,数字图像处理研究的历史相当悠久;横向来说,数字图像处理研究的话题相当广泛。数
- 显示硬件发展与视频开发系列(2)----2D时代
短视频技术
显示与视频技术gdi/gdi+图形学软件开发c++
3、2D时代几十年工艺改进,解决了基本制造问题,计算机开始向应用过渡。显示问题是首当其冲的问题,多年的思辨与实践,2D技术横空出世,完善发展,为计算机的应用推广做出了卓越的贡献。双色显示的星星之火,在2D时代终于熊熊燃烧,计算机走向民间的时代到来了。下面从公司产品的角度,回顾2D时代的图形图像编程。3.1、公司3.1.1、AmigaAmiga是80年代图形性能最强大的电脑之一,拥有专门处理图形的芯
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版)
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版))工业相机使用YoloV8模型实现不同水果的检测识别工业相机通过YoloV8模型实现不同水果的检测识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入Yo
- 相机ROI 参数
ZPC8210
视觉数码相机
相机的ROI(RegionofInterest,感兴趣区域)参数,是指通过设置图像传感器上特定区域作为有效成像区域,从而只采集该区域的图像数据,而忽略其他部分。这一功能常用于工业相机、科研相机、高速相机等场景,以提升帧率、降低数据量或实现特定区域的精细分析。ROI参数的核心要点作用提高帧率:减少处理的像素数量,降低数据带宽,使相机能以更高速度采集图像(例如:从30fps提升到100fps)。减少数
- 基于AlexNet架构的卷积神经网络模型用于对胸部X光图像进行二分类(例如,诊断肺炎)
1.肺炎正常的胸部X线片描绘了清晰的肺部,图像中没有任何异常混浊的区域。正常的胸部X线片1.1细菌性肺炎临床表现细菌性肺炎通常由细菌引起,如肺炎链球菌、流感嗜血杆菌、肺炎克雷伯菌等。患者可能出现高热、寒战、咳嗽、咳痰(痰液可能呈脓性)、胸痛、呼吸困难等症状。影像学特征局灶性肺叶实变细菌性肺炎在影像学上常表现为肺叶或肺段的局灶性实变,即某一区域的肺组织因炎症而失去气体交换功能,呈现为高密度影。胸腔积
- 多通道 ISP(双 ISP)并行处理机制解析:架构演进、资源调度与实战配置路径
观熵
影像技术全景图谱:架构调优与实战接口隔离原则架构影像Camera
多通道ISP(双ISP)并行处理机制解析:架构演进、资源调度与实战配置路径关键词:双ISP、并行图像处理、多Sensor管线、分布式调度、ISP平衡调度、帧同步、多路输入、SoC图像架构摘要:随着智能手机多摄系统的普及,传统单通道ISP架构已无法满足同时驱动多颗高分辨率摄像头、并发处理视频与拍照任务的性能需求。为此,各大SoC厂商纷纷引入“双ISP”或“多通道ISP”设计,用于提升吞吐能力、降低延
- 视觉Transformer还有哪些点可以研究?怎么应用?
计算机视觉工坊
3D视觉从入门到精通学习算法开源
0.这篇文章干了啥?今天笔者为大家推荐一篇最新的综述,详细总结了Transformer的网络架构、优化策略、发展方向,还会定期更新Github,研究注意力机制的小伙伴一定不要错过。注意机制有助于人类视觉系统有效地分析和理解复杂场景,它能够聚焦于图像的关键区域,同时忽略无关紧要的部分。受此概念启发,注意机制已经被引入到计算机视觉(CV)中,以动态地为图像中的不同区域分配权重。这使得神经网络能够专注于
- Halcon试用与许可指南:2022年7月版
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本文件提供了Halcon软件的试用证书和许可证相关资料的集合,为潜在用户提供免费体验Halcon各项功能的途径,包括图像处理、形状匹配、OCR和条形码读取等。用户可以通过试用版全面了解软件功能,评估是否符合项目需求,并指导如何正确管理和优化许可证使用,以符合预算和需求。1.Halcon软件概述在当今高度自动化的工业时代,机器视觉系统发挥着至关重要的作用。Hal
- LEADTOOLS 将一维和条形码读取图像 - Windows C DLL
sdk大全
LEADTOOLS23windowsc语言开发语言
将一维和条形码读取图像-WindowsCDLL本教程介绍如何使用WindowsCDLL应用程序中的LEADTOOLSSDK在加载的图像上写入一维和二维条形码信息。概述概括本教程介绍如何L_BarCodeWrite在WindowsCDLL应用程序中使用该函数。完成时间30分钟VisualStudio项目下载教程项目(19KB)平台WindowsCDLL应用程序集成开发环境VisualStudio20
- 手把手教你搭建AI搜图系统:基于BGE-VL+Milvus的完整实现指南
引言图像搜索有何价值?•帮你找身份证:在海量相册里搜索身份证•电商神器:淘宝"拍立淘"让你拍照变订单•设计师救星:3秒找到可商用的高清素材图老搜索vs新搜索的区别老搜索:像查字典,必须输入正确关键词新搜索:像跟人聊天,图片/语音都能搜,还能理解表情包为什么选BGE-VL+Milvus这个王炸组合?•就像给搜索引擎装了"人脑"(BGE-VL理解图片内涵)•加上"闪电手"Milvus(毫秒级匹配海量图
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- Matlab医学图像配准工具箱使用指南
远方之巅
本文还有配套的精品资源,点击获取简介:医学图像配准是一个关键的IT技术,特别是对于不同条件下的医学图像分析至关重要。’fordanic/image-registration’是一个Matlab工具箱,它提供了易于使用的接口和算法,助力研究人员和工程师高效准确地完成医学图像配准工作。工具箱内包含了多个示例脚本,详细演示了二维和三维空间中的图像配准步骤,包括图像预处理、特征检测、相似性度量、几何变换模
- AE音乐可视化模板:制作快速音乐视频
本文还有配套的精品资源,点击获取简介:AE音乐可视化模板旨在将音乐数据转化为视觉效果,包含预设动画和布局设计,使用户能够轻松制作节奏同步的音乐视频。关键编辑区包括音乐编辑、歌名、歌手、背景图片和专辑图片编辑区,以及用于总成预览的区域。这类模板通常适用于新手用户,通过简洁的编辑流程,用户可以利用丰富的视觉元素和动画效果快速创作。包含的项目文件、预设动画、图像和音频素材,以及使用指南,帮助用户顺利完成
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- RK3568平台(camera篇)opencv处理图像
嵌入式_笔记
瑞芯微opencv人工智能计算机视觉
一.颜色转换cv2.cvtColor()函数功能:将一幅图像从一个色彩空间转换到另一个色彩空间。函数原型:cv2.cvtColor(src,code,dst=None,dstCn=None)参数定义:src:要转换的源文件code,转换的色彩空间,在opencv中有超过150种颜色空间转换方法,但是经常用的只有BGR-灰度图和BGR-HSVBGR和灰度图的转换使用cv2.COLOR_BGR2GRA
- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- 如何从零开始入行机器学习
在当今的科技浪潮中,机器学习无疑是最耀眼的明星之一。它不仅引领了人工智能的发展,还在各个行业中催生了大量的创新和变革。对于那些对技术充满热情、渴望在这个领域有所作为的人来说,“如何从零开始入行机器学习”成为了最热门的话题之一。这不仅仅是技术上的挑战,更是一个职业生涯的新起点。想象一下,在未来的工作中,你能够开发出自动识别图像的应用程序,或者设计一个可以预测市场趋势的智能系统,这一切都源于你现在迈出
- 专业图片背景移除工具
开开心心_Every
ocr语音识别人工智能excelsymfony启发式算法宽度优先
软件介绍本文介绍一款具有智能抠图功能的图像处理工具,帮助用户快速完成图片背景分离操作。软件特性这款抠图工具提供绿色汉化版本,无需安装即可直接运行,操作界面简洁直观。使用方法用户只需将需要处理的图片文件拖拽至软件界面,系统即可自动识别并完成抠图操作,无需复杂设置。离线功能该工具支持离线使用模式,用户无需连接互联网即可完成图片抠图处理,保障隐私安全。这款工具还有许多功能,我就不一一介绍啦。以下为软件获
- 图像质量评价2
JXH_SHU
本次介绍的是2018CVPR另一篇图像质量评价的论文——BlindPredictingSimilarQualityMapforImageQualityAssessment。这篇采用的思路与之前那篇2018CVPR相近,同样是采用了质量图像生成的方法。这篇论文主要的特点是以全参考的相似图来作为生成网络的label,生成网络的结构采用了之前U-net架构,同时这篇论文还采用了一种集成的思想,即用多种的
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 深入解析MIPI C-PHY (四)C-PHY物理层对应的上层协议的深度解析
GateWorld
MIPICPHYMIPIMIPIDPHY高速接口
C-PHY物理层对应的上层协议的深度解析C-PHY上层协议全景图一、核心协议:CSI-2(CameraSerialInterface2)定位:图像传感器传输的行业金标准最新版本:CSI-2v4.0(2023)协作机制:C-PHY作为其物理层承载1.核心技术创新(C-PHY+CSI-2)技术痛点传统D-PHY方案C-PHY+CSI-2方案高分辨率带宽4K@60fps需8对数据线4K@120fps仅需
- 基于深度学习的图像分类:使用ShuffleNet实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘python目标检测
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。ShuffleNet是一种轻量级的深度学习架构,专为移动和嵌入式设备设计,能够在保持较高分类精度的同时,显著减少计算量和模型大小。本文将详细介绍如何使用ShuffleNet实现高效的图像分类,从理论基础到代码实现,带你一步步掌
- 《零基础入门AI:从图像梯度到凸包特征检测(OpenCV图像特征提取)》
竹子_23
OpenCV入门opencv人工智能计算机视觉
一、图像梯度处理:理解像素变化的本质1.1图像梯度基础图像梯度是计算机视觉中的核心概念,它描述了图像中像素强度的变化情况:梯度方向:像素值变化最剧烈的方向(垂直于边缘)梯度幅度:像素值变化的强度(值越大表示边缘越明显)物理意义:就像地形图中的等高线,梯度大的地方相当于陡坡,梯度小的地方相当于平地1.2垂直边缘提取垂直边缘是图像中物体左右边界形成的线条:特征:水平方向上像素值发生突变应用场景:文档扫
- 《零基础入门AI:OpenCV图像预处理进一步学习》
竹子_23
OpenCV入门opencv人工智能学习
本文全面讲解OpenCV图像预处理的七大核心技术(插值方法、边缘填充、图像矫正(透视变换)、图像掩膜、ROI切割、图像添加水印、图像噪点消除),每个知识点都配有详细解释和实用代码示例,帮助初学者建立系统的图像处理知识体系。一、插值方法:图像缩放的核心技术插值是在图像缩放或旋转时估算新像素值的方法,不同方法在速度和质量上有显著差异。1.最近邻插值原理:直接取最邻近像素的值特点:速度最快,但会产生锯齿
- OpenCV基础02_图像预处理
白槿_cha
计算机视觉基础opencv人工智能计算机视觉笔记
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学一、图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc