- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 【提高+/省选−】洛谷P1495 —— 【模板】中国剩余定理(CRT)/ 曹冲养猪
zbh0604
信息学奥赛扩展欧几里得算法中国剩余定理算法
题目来源P1495【模板】中国剩余定理(CRT)/曹冲养猪-洛谷题目描述自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了。如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头
- 【提高+/省选−】洛谷P1495 —— 【模板】中国剩余定理(CRT)/ 曹冲养猪
CCF_NOI.
信息学奥赛扩展欧几里得算法中国剩余定理(CRT)算法c++数据结构
见:P1495【模板】中国剩余定理(CRT)/曹冲养猪-洛谷题目描述自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有16头母猪,如果建了3个猪圈,剩下1头猪就没有地方安家了。如果建造了5个猪圈,但是仍然有1头猪没有地方去,然后如果建造了7个猪圈,还有2头没有
- AcWing 204:表达整数的奇怪方式 ← 扩展中国剩余定理
hnjzsyjyj
信息学竞赛#算法数学基础扩展中国剩余定理
【题目来源】https://www.acwing.com/problem/content/206/【题目描述】给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(modai)。【输入格式】第1行包含整数n。第2…n+1行:第i+1行包含两个整数ai和mi,数之间用空格隔开。【输出格式】输出最小非负整数x,如果x不存在,则输出−1。【输入
- 2025年第十六届蓝桥杯省赛B组Java题解【完整、易懂版】
大熊计算机
赛事/证书蓝桥杯java职场和发展
2025年第十六届蓝桥杯省赛B组Java题解题型概览与整体分析题目编号题目名称题型难度核心知识点通过率(预估)A逃离高塔结果填空★☆☆数学规律、模运算95%B消失的蓝宝结果填空★★★同余定理、中国剩余定理45%C电池分组编程题★★☆异或运算性质70%D魔法科考试编程题★★★素数筛、集合去重60%E爆破编程题★★★☆最小生成树、几何计算40%F数组翻转编程题★★☆贪心、数学分析55%G移动距离结果填
- 中国剩余定理
SweetCode
算法python数据结构
中国剩余定理(ChineseRemainderTheorem)详解:从原理到代码实现在数论和计算机科学中,中国剩余定理(CRT)是一种处理多个模运算方程组的强大工具,它不仅用于解线性同余方程组,还广泛应用于密码学、RSA算法、信号处理等领域。本文将从原理讲起,结合例子逐步深入,并提供可运行的代码实现。一、什么是中国剩余定理?中国剩余定理是关于整数同余方程组求解的一条基本定理,它的基本形式如下:定理
- 计算机密码体制分为哪两类,密码体制的分类.ppt
约会师老马
计算机密码体制分为哪两类
密码体制的分类.ppt密码学基本理论现代密码学起始于20世纪50年代,1949年Shannon的《TheCommunicationTheoryofSecretSystems》奠定了现代密码学的数学理论基础。密码体制分类(1)换位与代替密码体制序列与分组密码体制对称与非对称密钥密码体制数学理论数论信息论复杂度理论数论--数学皇后素数互素模运算,模逆元同余方程组,孙子问题,中国剩余定理因子分解素数梅森
- 从零开始学RSA:低加密指数广播攻击
网络安全我来了
Crypto算法python网络安全
(10)低加密指数广播攻击如果选取的加密指数较低,并且使用了相同的加密指数给一个接受者的群发送相同的信息,那么可以进行广播攻击得到明文。适用范围:模数n、密文c不同,明文m、加密指数e相同。一般情况下,e=k(k是题目给出的n和c的组数)。例如:下面的就是e=k=3使用不同的模数n,相同的公钥指数e加密相同的信息。就会得到多个,将视为一个整体M,这就是典型的中国剩余定理适用情况。按照本文的中国剩余
- (扩展)中国剩余定理(模板)
UniverseofHK
数学(扩展)中国剩余定理模板
中国剩余定理:猜数字求解下列同余方程组(模数互质){x≡a1(modm1)x≡a2(modm2)⋮x≡an(modmn)\begin{cases}x\equiva_1\(\mod\m_1\)\\x\equiva_2\(\mod\m_2\)\\\quad\vdots\\x\equiva_n\(\mod\m_n)\end{cases}⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x≡a1(modm1)x≡a2(modm2)⋮
- 洛谷 P4777 【模板】扩展中国剩余定理(EXCRT)
qq_38232157
noi后缀数组扩展中国剩余定理
1、中国剩余定理(n条同余式子,前提是m[1]~m[n]两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])2、扩展中国剩余定理(n条同余式子,m[1]~m[n]不一定两两互质)x=r[1](modm[1])x=r[1](modm[2])…x=r[n](modm[n])考虑签名两条方程,x=r[1](modm[1]),x=r[1](modm[2])
- 洛谷 P1495 【模板】中国剩余定理(CRT)/曹冲养猪(中国剩余定理)
qq_38232157
洛谷数论
中国剩余定理概念:设m[1],m[2],m[3],…,m[[n]是两两互质的整数。方程组x=a[1](modm[1])//注意,这里的'='表示同余符号x=a[2](modm[2])...x=a[n](modm[n])方程的解x=sum{a[i]*(m/m[i])*t[i]}(1#include#includeusingnamespacestd;constintMaxN=1e5+10;typede
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 近世代数理论基础7:同余式·中国剩余定理
溺于恐
同余式·中国剩余定理同余式定义:给定整系数多项式,则称同余方程为模m的同余式,若,则称它为n次同余式若,满足,则,b也满足,因而称为该同余式的一个同余解定理:一次同余式,有解,若有解,则有个同余解证明:中国剩余定理定理:设,且两两互素,则同余式组,模有唯一同余解证明:
- python实现中国剩余定理
含泪进厂
python
中国剩余定理又称孙子定理,是数论中一个重要定理。最早可见于我国的数学著作《孙子算经》卷下“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。把这题转化成现代数学问题:求一个数x,该数除以3余2,除以5余3,除以7余2把以上问题转化为一般方程的形式根据中国剩余定理解如下其中python代码实现n=i
- 孙子定理和“物不知数”问题
软件技术爱好者
数学广角随笔数学
孙子定理和“物不知数”问题孙子定理,也称为中国剩余定理或中国余数定理。孙子定理是中国古代求解一次同余式组(见同余)的方法。此定理,在公元5-6世纪的中国南北朝时期的数学家孙子提出的“物不知数”问题可以被视为中国剩余定理的一个应用实例。《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?即,一个整数除以三余二,除以五余三,除
- 笔记---中国剩余定理
Die love 6-feet-under
笔记算法c++
全程学自y总AcWing.204.表达整数的奇怪方式给定2n2n2n个整数aaa1,aaa2,…,aaan和mmm1,mmm2,…,mmmn,求一个最小的非负整数xxx,满足∀i∈[1,n],x≡m∀i∈[1,n],x≡m∀i∈[1,n],x≡mi(moda(moda(modai)))。输入格式第1行包含整数nnn。第2…nnn+1行:每iii+1行包含两个整数aaai和mmmi,数之间用空格隔开
- ACM必备知识
Element-YoNg
时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排序,外部排序)数论(整除,集合论,关系,素数,进位制,辗转相除,扩展的辗转相除,同余运算,解线性同余方程,中国剩余定理)指针(链表,搜索判重,邻接表,开散列,二叉树的表示,多叉树的表示)按位运算(and,or,xor,sh
- 专题讲座3 数论+博弈论 学习心得
繁水682
专题讲座c++
先放一下眼泪学长的精华内容汇总。PPT笔记汇总:【小组专题四:素数】pi(x),狄利克雷关于等差数列中素数定理,梅森素数,素数证明_溢流眼泪的博客-CSDN博客【算法讲2:拓展欧几里得(简略讲)】求解ax+by=c_溢流眼泪的博客-CSDN博客中国剩余定理学习笔记-MashiroSky-博客园【训练题23:中国剩余定理】猜数字|P3868[TJOI2009]_溢流眼泪的博客-CSDN博客(扩展)B
- C++ 数论相关题目 表达整数的奇怪方式(中国剩余定理)
伏城无嗔
数论力扣算法笔记c++算法
给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(modai)。输入格式第1行包含整数n。第2…n+1行:每i+1行包含两个整数ai和mi,数之间用空格隔开。输出格式输出最小非负整数x,如果x不存在,则输出−1。数据范围1≤ai≤231−1,0≤mi#includeusingnamespacestd;typedeflonglongLL
- 【数学】一元一次同余方程组、中国剩余定理(CRT)与扩展中国剩余定理(exCRT)
OIer-zyh
数学#数论c++OI数学算法数论
一元一次同余方程组形如{x≡a1(modm1)x≡a2(modm2) ⋮x≡an(modmn)\begin{cases}x\equiva_1\pmod{m_1}\\x\equiva_2\pmod{m_2}\\\>\>\>\>\>\>\>\>\>\>\>\>\>\>\>\vdots\\x\equiva_n\pmod{m_n}\end{cases}⎩⎨⎧x≡a1(modm1
- Acwing - 算法基础课 - 笔记(数学知识 · 二)
抠脚的大灰狼
算法Acwing算法基础课算法数论
文章目录数学知识(二)欧拉函数公式法筛法欧拉定理快速幂扩展欧几里得算法中国剩余定理数学知识(二)这一小节主要讲解的内容是:欧拉函数,快速幂,扩展欧几里得算法,中国剩余定理。这一节内容偏重于数学推导,做好心理准备。欧拉函数公式法什么是欧拉函数呢?欧拉函数用ϕ(n)\phi(n)ϕ(n)来表示,它的含义是,111到nnn中与nnn互质的数的个数比如,ϕ(6)=2\phi(6)=2ϕ(6)=2,解释:1
- 数论知识学习总结(二)
Nie同学
acwing学习总结c++
文章目录一、欧拉函数1.欧拉函数2.筛法求欧拉函数(采用筛质数的线性筛法)二、快速幂1.快速幂2.快速幂求逆元三、扩展欧几里得算法1.扩展欧几里得算法2.线性同余方程四、中国剩余定理1.表达整数的奇怪方式一、欧拉函数在数论,对正整数nnn,欧拉函数是小于等于nnn的正整数中与nnn互质的数的数目.1.欧拉函数1∼N1\simN1∼N中与NNN互质的数的个数被称为欧拉函数,记为ϕ(N)\phi(N)
- 费马小定理&费马大定理
Wkzlike
算法
(1)费马小定理结论:结论是若存在整数a,p且gcd(a,p)=1,即二者互为质数,则有a(p-1)≡1(modp)。(这里的≡指的是恒等于,a(p-1)≡1(modp)是指a的p-1次幂取模与1取模恒等),再进一步就是ap≡a(modp)。继续学习:中国剩余定理、拓展欧几里得(exgcd)、求除法逆元、费马小定理(2)费马大定理结论:又被称为“费马最后的定理”,常见的表述为当整数n>2时,关于x
- 基于格理论来破解RSA公钥密码(1)
唠嗑!
格密码密码学网络安全
目录一.介绍二.RSA密码系统2.1生成公私钥2.2加密2.3解密三.中国剩余定理攻击低指数的RSA3.1介绍3.2中国剩余定理四.基于多项式的RSA加密五.小结一.介绍我们生活中常使用的网络浏览器,智能卡片都有RSA公钥密码的影子。从1977年,RSA密码系统提出,五十年来涌现出了大量的攻击算法。Hastad和Coppersmith创新性的用格密码理论来攻击RSA系统,尤其是公开指数较小的时候。
- 中国剩余定理的同态性质(CRT变换的同态性)
咸鱼菲菲
数论基本算法抽象代数同态加密
1、中国剩余定理简介(ChineseRemainderTheory,CRT)中国剩余定理是关于求解一元线性同余方程组的方法,用形式化的描述就是:m1,m2,mnm_1,m_2,m_nm1,m2,mn是两两互素的n个整数,有下面的同余方程组:{x≡a1mod m1x≡a2mod m2...x≡anmod mn(m1,m2,⋯ ,mn)两两互素\left\{\begin{array}{lr}x\
- ACM板子
GGood_Name
cocoamacosobjective-cc++
文章目录板子:初始化:快读:快速幂:GCD/LCM:组合数:欧拉筛:大整数质因数分解:分解质因数:求(1e12)内质数:KMP:最小生成树:最短路LCA查找最近祖先二分图匹配RMQ区间最小值:01字典树:字典树:线段树:最长上升子序列:最长公共子序列:01背包中国剩余定理模板*L**u**c**a**s*定理。扩展Lucas定理hash+二分求最长回文串**尼姆博弈模型**莫队算法权值线段树回文树
- 【网络安全】【密码学】【北京航空航天大学】实验三、数论基础(下)【C语言实现】
不是AI
C语言密码学算法web安全密码学c语言
实验三、数论基础(下)一、实验内容1、中国剩余定理(ChineseRemainderTheorem)(1)、算法原理m1,m2,…mk是一组两两互素的正整数,且M=m1·m2·…·mk为它们的乘积,则如下的同余方程组:x==a1(modm1)x==a2(modm2)…x==ak(modmk)对于模M有唯一的解x=(M·e1·a1/m1+M·e2·a2/m2+…+M·ek·ak/mk)(modM)其
- 算法-大数相乘
Aberwang9157
java算法java
解决算法;*1.模拟小学乘法:最简单的乘法竖式手算的累加型;*2.分治乘法:最简单的是Karatsuba乘法,一般化以后有Toom-Cook乘法;*3.快速傅里叶变换FFT:(为了避免精度问题,可以改用快速数论变换FNTT),时间复杂度O(NlgNlglgN)。具体可参照Schönhage–Strassenalgorithm;*4.中国剩余定理:把每个数分解到一些互素的模上,然后每个同余方程对应乘
- 任意模数FTT
YiPeng_Deng
学习小计FFT和NTTfft任意模数fft常数优化
模板题luogu42459次DFT由于在一般的条件下值域大概在102310^{23}1023下,所以找到三个NTT模数,它们的乘积大于102310^{23}1023,求出三个模数下的答案,再用中国剩余定理把它们合并到一起,变成模三个数的乘积下的答案,这就是它的实际答案。一共需要9次DFT,常数比较小,但是9次实在是太慢了。三次变两次由于复数域的神奇性质,我们在FFT的时候可以将计算C(x)=A(x
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs