- 每日一题7.2
渣呵
每日一题图论算法c++
P2863[USACO06JAN]TheCowPromS-洛谷算是一个tarjan的板子题#include#include#include#includeusingnamespacestd;constintN=1e4+5;intdfn[N],low[N],s[N],belong[N];vectorg[N];intcnt,top,num,ans,flag;boolins[N];voidtarjan(
- 河南萌新联赛2024第(四)场的个人题解(适合小白)
耳朵听不见deaf
ACM算法
河南萌新联赛2024第(四)场的题目链接文章目录ABCEGIJKLAA题目链接思路: sum=计算原来每个连通块的士兵数量总和的平方。 枚举每个点,若破坏当前点,当前点所在的连通块的计算值,记录ma=没破坏前的计算值-破坏后的计算值,记录最大值涉及的知识:tarjan算法不明白的话,可以看我的第二篇博客LCA算法有用的知识:__int128 占用128字节的整数存储类型,范围为-2127~2
- 洛谷 P3916 图的遍历(tarjan + 缩点 + dfs)
无糖钨龙茶
图论深度优先算法
洛谷P3916图的遍历(tarjan+缩点+dfs)放个传送门这道题其实很多人都选择反向建图,然后dfs一下就过了。但确是一道不错的tarjantarjantarjan+缩点+dfsdfsdfs的练手题————————————————————————————————————图的遍历题目描述给出NNN个点,MMM条边的有向图,对于每个点vvv,求A(v)A(v)A(v)表示从点vvv出发,能到达的编
- 《强连通分量(tarjan算法)》基础概念
文章目录一、算法概述二、算法思路三、伪代码实现1.类定义与数据结构2.主程序示例四、算法解释1.初始化阶段2.DFS遍历与时间戳更新3.强连通分量识别4.示例演示五、复杂度分析一、算法概述定义:Tarjan算法是一种用于在有向图中求解强连通分量(StronglyConnectedComponent,SCC)的高效算法。强连通分量指有向图中任意两顶点互相可达的最大子图。核心思想:基于深度优先搜索(D
- LCA-Tarjan
hello_mark_
算法数据结构
1171.距离给出nn个点的一棵树,多次询问两点之间的最短距离。注意:边是无向的。所有节点的编号是1,2,…,n1,2,…,n。输入格式第一行为两个整数nn和mm。nn表示点数,mm表示询问次数;下来n−1n−1行,每行三个整数x,y,kx,y,k,表示点xx和点yy之间存在一条边长度为kk;再接下来mm行,每行两个整数x,yx,y,表示询问点xx到点yy的最短距离。树中结点编号从11到nn。输出
- 校园网--tarjan求缩点的两个经典问题
泛舟起晶浪
算法c++图论
1.入度为0点通知全部2.DAG变SCC,别忘了特判称环的情况P2746[USACO5.3]校园网NetworkofSchools-洛谷#includeusingnamespacestd;#defineN100011typedeflonglongll;typedefpairpii;intn;vectormp[105],p[105];intcnt,c;intlow[105],dfn[105],sd[
- 图论---LCA(Tarjan 离线做法)
快乐的小涵
图论算法数据结构
#includeusingnamespacestd;typedefpairpii;constintN=20010,M=2*N;//是无向边,边需要见两边intn,m;vectorg[N];intp[N];//求一下每个点到根节点之间的距离intdist[N];intres[N];//存结果//first存查询的另外一个点是谁//second存查询编号vectorquery[N];intst[N];
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- 【模板】缩点
南星啊
算法模板图论算法
洛谷p3387思路:算法:tarjan算法根据题意,我们只要找到一个路径,使得最终权重最大即可,首先,根据题目可知,如果一个点在一个环上,那么我们就将这整个环都选上,题目上允许我们能够重复走,因此,我们可以将环缩成点,将环所称点后,就可以转换成树,从没有父节点的结点开始,我们向下走,每遍历一个子结点,就将子节点更新一次,最终取结点的最大值即可#includeusingnamespacestd;in
- 图论算法补充--Tarjan求割点(AI梳理版)
sml259(劳改版)
图论算法深度优先
基本概念在无向图中,割点是指去掉该点及与该点相连的所有边后,图的连通分量会增加的点。比如在一个城市交通网络(可看作无向图,节点是地点,边是道路)中,某个关键地点(割点)被封锁,会导致原本连通的区域被分割成多个不相连的部分。Tarjan算法原理Tarjan算法通过深度优先搜索(DFS)遍历无向图,给每个节点引入两个重要属性:dfn[u]:时间戳,记录节点u在DFS过程中被首次访问的次序。low[u]
- 信息学奥赛一本通 1524:旅游航道
君义_noip
信息学奥赛一本通题解信息学奥赛算法C++图论
【题目链接】ybt1524:旅游航道【题目考点】1.图论:割边(桥)【解题思路】一个星球是一个顶点,一条航道是一条无向边,任意两星球之间可以通过航道到达,说明该图是连通图。可以认为输入数据中没有重边和自环。“如果某一条航道的删除使得一些星球不能到达,那么这条航道是不能删除的,称之为「主要航道」”,显然主要航道就是桥。该题求一个连通图的桥的数量,使用tarjan算法可以完成。【题解代码】解法1:ta
- 【蓝桥杯】版本分支 (图论——Tarjan求LCA)
老帅比阿
算法提高蓝桥杯图论蓝桥杯算法
文章目录一、算法介绍(Tarjan算法-离线求LCA)1.什么是最近共先祖?2.Tarjan算法二、例题总结一、算法介绍(Tarjan算法-离线求LCA)1.什么是最近共先祖?首先是最近公共祖先的概念(什么是最近公共祖先?):在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点。换句话说,就是两个点在这棵树上距离最近的公共祖先节点。
- [BZOJ1093][ZJOI2007]最大半连通子图(Tarjan+拓扑排序+DP)
xyz32768
BZOJUOJLOJ拓扑排序Tarjan
首先得到,一个强连通分量一定是半连通的。把强连通分量缩点之后,可以得到一个拓扑图。下面,sze[u]为新图中点u所对应强连通分量的大小。缩点之后,就很容易得出,一个半连通子图一定是拓扑图中的一条链,半连通子图的大小为这条链上所有点的sze之和。所以,现在就是要求这个拓扑图的最长链(sze之和最大)。考虑按照拓扑排序DP,f[u]表示以u为终点的最长链长度:1、对于点u,如果点u的入度为0,则f[u
- bzoj 1093: [ZJOI2007]最大半连通子图【tarjan+拓扑排序+dp】
weixin_30951743
先tarjan缩成DAG,然后答案就变成了最长链,dp的同时计数即可就是题面太唬人了,没反应过来#include#include#include#include#includeusingnamespacestd;constintN=100005;intn,m,mod,h[N],cnt,dfn[N],low[N],tot,bl[N],col,s[N],top,si[N],d[N],f[N],g[N]
- 【noip2009】最优贸易 tarjan+拓扑+dp或spfa
anantheparty
noip图论动态规划拓扑spfanoipspfatarjan拓扑排序dp
描述C国有n个大城市和m条道路,每条道路连接这n个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这m条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为1条。C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。商人阿龙来到C国旅游。当他得知同一种商品
- 最大半连通子图(tarjan缩点+拓扑排序+dp最长链)
Snow_raw
图论算法图论
最大半连通子图(tarjan缩点+拓扑排序+dp最长链)洛谷P2272基本知识点:1:1:1:联通分量:uvuvuv半联通分量:u=>vu=>vu=>vorororv=>uv=>uv=>u2:2:2:子图:节点集和边集分别是某一图的节点集的子集和边集的子集的图3:3:3:连通分量必定是半连通分量,反之不一定思路:1:1:1:题目第111个要求是求最大半连通子图的节点数即节点数最多的半连通子图。显然
- [ZJOI2007]最大半连通子图【tarjan缩点】【拓扑排序+DP】
ssl_fuyang
tarjanDP拓扑排序图论算法
>LinkluoguP2272ybtoj最大半连通子图>DescriptionN≤105,M≤106N\le10^5,M\le10^6N≤105,M≤106>解题思路强连通子图一定是半连通子图,所以考虑到把这张图进行缩点然后图就变成了一个DAG这时就会发现,题目要求求的最大半连通子图其实就是DAG上的一条链(如果是两条链组合的话,不满足要求)要注意的是,缩点以后建边要注意判重,建重边的话会似的方案
- YbtOJ 强连通分量课堂过关 例1 有向图缩点【Tarjan】【DP】【拓扑排序】
JA_yichao
题解YbtOJ专项练习题#强连通分量
思路这道题首先搞一个TarjanTarjanTarjan,求出所有强连通分量。然后就缩点,具体做法是枚举每条边然后判断这条边上的点在不在同一个强连通分量上,不在就连边。然后就做一个DP+拓扑排序,边拓扑边DP,f[y]=max(f[y],f[x]+cnt[y])f[y]=\max(f[y],f[x]+cnt[y])f[y]=max(f[y],f[x]+cnt[y]);代码#include#inc
- tarjan算法——求无向图的割点和桥
风灵无畏YY
强连通分量tarjan割点和桥
一.基本概念1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥。2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点。二:tarjan算法在求桥和割点中的应用1.割点:1)当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子
- hnoi矿场搭建——Tarjan割点
stevensonson
BZOJ
Description煤矿工地可以看成是由隧道连接挖煤点组成的无向图。为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处。于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之后,其他挖煤点的工人都有一条道路通向救援出口。请写一个程序,用来计算至少需要设置几个救援出口,以及不同最少救援出口的设置方案总数。Input输入文件有若干组数据,每组数据的第一行是一个正整
- 100种算法【Python版】第38篇—— Tarjan算法
AnFany
算法python开发语言Tarjan算法群体分析
本文目录1算法说明2算法示例:社交群体分析3算法示例:交通路网中的强连通分量识别4算法应用1算法说明Tarjan算法由计算机科学家RobertTarjan于1972年提出,目的是在有向图中有效地找到强连通分量(StronglyConnectedComponents,SCC)。强连通分量是指图中一个最大子图,其中任意两个节点之间都有路径相互可达。Tarjan算法是基于深度优先搜索(DFS)的一种高效
- Python实现强连通分量算法——Tarjan算法
NoABug
算法深度优先python
Python实现强连通分量算法——Tarjan算法Tarjan算法是一种基于深度优先搜索(DFS)的强连通分量(SCC)查找算法,由RobertTarjan在1972年提出。它采用了栈(Stack)数据结构来记录已发现但未处理完的节点,并通过对每个节点进行DFS遍历来寻找强连通分量。以下是Python实现的Tarjan算法的完整源码:#-*-coding:utf-8-*-deftarjan(gra
- Tarjan求无向图割边
Visors
算法图论
文章目录Tarjan算法无向连通图的搜索树时间戳dfn追溯值low无向图的割边及判定对重边的处理参考实现Tarjan算法不得不说RobertTarjan真的是大师,发个网站大家感受一下——论文索引。这里要说的Tarjan算法用于解决无向图的连通性,学习之前,先了解两个概念。无向连通图的搜索树当我们遍历一个无向连通图时,显然一个点只会被访问一次,而访问一个点的方法是从一个当前已访问的点uuu,沿着它
- 24-3-25拓扑+二分图+tarjan
Agnes_A20
c++算法开发语言
确定比赛名次问题(图的拓扑排序+单调队列)原文链接:https://blog.csdn.net/Mitchell_Donovan/article/details/116654722问题描述:有N个比赛队伍(1#include#include#includeusingnamespacestd;voidtopsort(intnumvextex,vector>&matrix,vector&depth){
- 日常题解——LCA和RMQ1
xiaowang524
深度优先算法图论
Tarjan算法:DFS+并查集求LCARMQ查询区间最大最小值,st(动态规划写法)dfs序/dfn序->使用dfn编号构建的dfs序,在dfs序上rmq查询区间最小值得到的就是lca的编号,映射得到的是节点板子话不多说,贴代码这个代码没有具体的建树,只有核心的代码原理和代码实现,建树用python的邻接表最方便,遍历子节点部分参照Python遍历邻接表逻辑理解publicclassLCA_RM
- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 2.18学习总结
啊这泪目了
学习数据结构
链式前向星的处理和建立tarjan对割点和缩点的使用拓扑排序链式前向星:预处理:structedge{intfrom;intto;intnext;}e[N];intn,m,head[N],dfn[N],low[N],tot,color[N],num[N],out[N],s,instack[N],id;处理:voidadd(intu,intv){e[++tot].from=u;e[tot].to=v
- 2.17学习总结
啊这泪目了
学习
tarjan【模板】缩点https://www.luogu.com.cn/problem/P3387题目描述给定一个�n个点�m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。输入格式第一行两个正整数�,�n,m第二行�n个整数,其中第�i个数��ai表示点�i的点权。第三至�+2m+2
- HDUOJ 4738 Caocao‘s Bridges 题解 桥 割边 Tarjan
kaiserqzyue
算法题目c++算法图论
题目链接:HDUOJ4738Caocao’sBridges题目描述:给定一个无向图,你可以选择最多删除一条边,删除边的代价是边的边权(特殊地,删除一条边权为0的边的代价是1),问最小代价使得图不连通。如果无论如何图都是连通的,那么则输出-1。题解:题目也就是需要我们求一条桥边,这个桥边所拥有的边权最小。我们只需要求出所有的桥边,然后对边权取一个最小值即可(需要注意边权为0的边我们要将其变成边权为1
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象