- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- OpenCV结合深度学习进行图像分类
香蕉可乐荷包蛋
#OpenCVopencv深度学习分类
文章目录1.支持的深度学习框架和模型格式2.模型加载方式加载预训练模型示例:3.图像预处理流程4.前向传播与推理5.结果解析与后处理6.性能优化技巧启用GPU加速:批量处理:代码示例在资源中有上传1.支持的深度学习框架和模型格式OpenCV的DNN模块支持多种主流深度学习框架训练的模型:TensorFlow:支持冻结图(.pb)和SavedModel格式Caffe:支持.prototxt和.caf
- 马斯克称回归高强度工作模式:一周七天,办公室睡觉;传OpenAI 8月推出GPT-5;微软CEO回应裁员9000人 | 极客头条
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。(投稿或寻求报道:
[email protected])整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!百度启动新一轮干部轮岗,原智能体业务负责人轮岗负责地图事业部北京「开源之都」加速建设,国产开源大模型再获突破蚂蚁新设通用人工智能研究中心让人形机器人“进厂
- 周鸿祎评DeepSeek流量下滑:梁文锋没花心思做;曝马斯克用200+员工人脸训练Grok;传阿里本周发布自研AI眼镜|极客头条
极客日报
人工智能
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。(投稿或寻求报道:
[email protected])整理|郑丽媛出品|CSDN(ID:CSDNnews)一分钟速览新闻点!周鸿祎回应是否会重新采购英伟达H20:最近采购的都是华为的产品传原字节Seed技术大牛陈杰已加入小鹏机器人团队周鸿祎评DeepSeek流量下滑:梁文锋没
- 对话谷歌前 CEO Eric Schmidt:数字超智能将在十年内到来,AI 将创造更多更高薪的工作
责编|王启隆出品|CSDN(ID:CSDNnews)投稿或寻求报道|
[email protected]科技巨擘、谷歌前CEOEricSchmidt最近做客PeterDiamandis的Moonshots播客,与主持人PeterDiamandis及DaveLondon展开了一场关于人工智能未来的深度对话。全世界都在为AI的飞速发展感到兴奋又焦虑时,这位曾经执掌谷歌帝国长达十年、亲眼见证并推动了这场技术
- PyTorch深度学习工具箱整理总结
前网易架构师-高司机
深度学习+AIpytorch
一、pytorch简介Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对GPU加速的深度神经网络(DNN)编程。Torch是一个经典的对多维矩阵数据进行操作的张量(tensor)库,在机器学习和其他数学密集型应用有广泛应用。与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。但由于Torch语言采用Lu
- 对话谷歌前 CEO Eric Schmidt:数字超智能将在十年内到来,AI 将创造更多更高薪的工作
AI科技大本营
人工智能
责编|王启隆出品|CSDN(ID:CSDNnews)投稿或寻求报道|
[email protected]科技巨擘、谷歌前CEOEricSchmidt最近做客PeterDiamandis的Moonshots播客,与主持人PeterDiamandis及DaveLondon展开了一场关于人工智能未来的深度对话。全世界都在为AI的飞速发展感到兴奋又焦虑时,这位曾经执掌谷歌帝国长达十年、亲眼见证并推动了这场技术
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- 2018 MacBook Pro 安装cuda+cuDNN+pytorch
2018MacBookPro安装cuda+cuDNN+pytorch根据CSDN上的两篇文章和知乎上的一篇文章,前前后后折腾了好几天,在一个小姐姐的帮助下终于装上了。我的环境系统版本:macOS10.13.6(17G10021)GPUDriverVersion:387.10.10.10.40.133CUDADriverVersion:410.130CUDA:cuda_10.0.130cuDNN:c
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- python3.9安装tensorflow-gpu 2.6.0和torch-gpu版本各依赖包的版本对应关系
首先使用的cuDNN(8.1)、CUDA(11.2)、tensorflow-gpu(2.6.0)、python(3.9)之间对应版本Window环境下安装pytorch下载地址tensorflow官网CUDA下载官网cuDNN下载官网注意:cuDNN需要注册absl-py0.15.0astunparse1.6.3cachetools5.3.2certifi2023.7.22charset-norm
- 全球50+亿下载、狂揽200+亿美元的《糖果传奇》被曝荒诞一幕:超200人被自己造的AI逼到失业!
CSDN资讯
人工智能
整理|郑丽媛出品|CSDN(ID:CSDNnews)投稿或寻求报道:
[email protected]还记得那个让全球数亿人上瘾的三消游戏吗?2012年诞生的《糖果传奇》(CandyCrush),曾是移动游戏界当之无愧的王者——全球下载量突破50亿,累计总营收突破200亿美元,多次占据AppStore和GooglePlay下载榜和收入榜前列。而它的开发商King,也因此一跃成为全球最赚钱的手游公司之
- 【深度强化学习】MIP-DQN 实现案例(完整Python代码)
目录MIP-DQN算法概述建模基础训练阶段(Training)部署阶段(OnlineExecution)DNN网络转化为MIP表达式性能指标完整Python代码实现主函数:random_generator_battery模型函数:MIP_DQN基础/专用库包安装模型运行(完整Python代码)参数设置函数:Parameters参考本博客根据论文《Optimalenergysystemschedul
- 利用Windows .NET特性和Unicode规范化漏洞攻击DNN (DotNetNuke)
sechub
windows.netdnn
概述DNN(前身为DotNetNuke)是2003年建立的最古老的开源内容管理系统之一,使用C#(.NET)编写,由活跃的爱好者社区维护。它也被企业广泛使用。漏洞背景CVE-2017-9822历史案例我们熟悉这项技术是因为CVE-2017-9822,该漏洞允许通过DNNPersonalizationcookie的不安全反序列化进行远程代码执行(RCE)。这个CVE一直是反序列化攻击的绝佳案例研究。
- Qualcomm Hexagon DSP 与 AI Engine 架构深度分析:从微架构原理到 Android 部署实战
观熵
国产NPU×Android推理优化人工智能架构android
QualcommHexagonDSP与AIEngine架构深度分析:从微架构原理到Android部署实战关键词QualcommHexagon、AIEngine、HTA、HVX、HMX、Snapdragon、DSP推理加速、AIC、QNNSDK、Tensor编排、AndroidNNAPI、异构调度摘要HexagonDSP架构是QualcommSnapdragonSoC平台中长期演进的异构计算核心之一
- 美团辟谣「30万本科生送外卖」;微软裁员再引争议,员工未归属股票被全部回收;传OpenAI“开放权重模型”最快下周上线|极客头条
极客日报
microsoft
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。(投稿或寻求报道:
[email protected])整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!美团辟谣「30万本科生送外卖」传字节跳动旗下沐瞳科技已收购杭州心光流美2025福布斯中国最佳CEO榜单揭晓:马化腾、雷军、王传福排名前三武汉大学集成电路学
- 【论文阅读】Meta-SE: A Meta-Learning Framework for Few-Shot Speech Enhancement
Bosenya12
论文阅读
这篇文章介绍了一个名为Meta-SE的元学习框架,专门用于少样本(few-shot)语音增强问题。文章的核心目标是解决在实际应用中,由于训练样本有限而导致传统深度神经网络(DNN)模型性能受限的问题。Meta-SE通过元学习的方法,利用先验的元知识快速适应新的任务和噪声类型,即使只有少量训练样本也能表现出色。背景知识与研究动机语音增强技术旨在从带噪语音信号中恢复目标语音,提升语音质量和可懂度。深度
- jetson orin nano安装GPU版本的pytorch过程
小鲈鱼-
pytorch人工智能python
一、安装jetpack组件和安装CUDA/cuDNN可以参考下面这个博客「解析」JetsonOrinNX安装CUDA/cuDNN_jetsoncuda-CSDN博客二、安装Pytorch和torchaudio可以直接看官方给的步骤https://pytorch.org/audio/main/build.jetson.html
- Ubuntu22.04安装cudnn详细步骤
大鹏的NLP博客
深度学习cudnn
下载指定版本的cudnnhttps://developer.nvidia.com/rdp/cudnn-archive#a-collapse804-111安装sudodpkg-icudnn-local-repo-ubuntu2204-8.9.7.29_1.0-1_amd64.deb根据上步提示:sudocp/var/cudnn-local-repo-ubuntu2204-8.9.7.29/cudnn
- 深度神经网络课程设计:从理论到实践
Vita Libre
本文还有配套的精品资源,点击获取简介:深度神经网络是深度学习预测的核心技术,本课程设计项目旨在教授学生如何构建和应用深度神经网络进行各种预测任务,包括图像识别和自然语言处理。学生将通过源代码示例学习从网络架构设计、数据预处理到模型训练与评估的完整流程,并掌握深度学习的基本概念、组件及技巧。1.深度神经网络定义和在深度学习预测中的角色深度神经网络(DeepNeuralNetworks,DNNs)是深
- DeepSeek 部署中的常见问题及解决方案
tonngw
后端
技术文章大纲:DeepSeek部署中的常见问题及解决方案引言简要介绍DeepSeek及其应用场景,说明部署过程中可能遇到的挑战。环境配置问题硬件兼容性问题:GPU型号、驱动版本不匹配的解决方案。依赖库冲突:Python版本、CUDA/cuDNN不兼容的排查方法。虚拟环境配置:Anaconda或Docker环境的最佳实践。模型加载与初始化问题预训练模型下载失败:网络代理设置、手动下载替代方案。显存不
- Flutter 稳定版支持 Windows,开发者还学的动吗?
以下文章来源于code小生,关注每日干货及时送达整理|郭露责编|张红月出品|CSDN(ID:CSDNnews)Flutter是由谷歌开发的开源移动UI框架,可快速在不同平台上构建高质量原生用户界面。Flutter支持现有的所有代码,在世界各地受到越来越多开发者的追捧。到目前为止,全球已发布了近50万个使用Flutter的应用程序,其中包括来自字节跳动等大型公司的应用程序,以及谷歌三十个团队的应用程
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
村北头的码农
OpenCVopencvdnn人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中超分辨率(SuperResolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。这个类是OpenCV中用于执行深度学习超分辨率推理的主要类。你可以用它来加载预训练的超分辨率模型(如ED
- Linux|ubuntu22.04安装CUDA最新完整教程
文章目录一、安装前准备工作查看GPU和型号查看GCC版本*下载gcc12*检查驱动二、安装CUDAToolkit*安装驱动三、安装后的工作必要操作推荐的操作开启守护进程模式删除本地下载安装包四、验证删除CUDA常见问题及解决方案还需要安装cuDNN吗?nvcc:Nosuchfileordirectory“errorwhileloadingsharedlibraries::cannotopensha
- Ubuntu22.04安装CUDA12.1 cuDNN8.9.7 pytorch2.2.2
快乐的笨笨
linux
当前安装的电脑配置:电脑名称:暗影精灵5系统名称:Ubuntu22.04.4LTS操作系统类型:64位内存:8.0Gib处理器:Intel®Core™
[email protected]显卡:NVIDIACorporationTU117M[GeForceGTX1650Mobile/Max-Q]MesaI...安装前准备:需要安装对应的NVIDIA驱动程序、配置CUDA依赖环境g++gccm
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- equine在神经网络中建立量化不确定性
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载众所周知,用于监督标记问题的深度神经网络(DNN)可以在各种学习任务中产生准确的结果。但是,当准确性是唯一目标时,DNN经常会做出过于自信的预测,并且无论测试数据是否属于任何已知标签,它们也总是进行标签预测。EQUINEwascreatedtosimplifytwokindsofuncertaintyquantificationforsupervisedlabel
- 理解不同层的表示(layer representations)
科学禅道
高维表示人工智能深度学习
在机器学习和深度学习领域,特别是在处理音频和自然语言处理(NLP)任务时,"层的表示"(layerrepresentations)通常是指神经网络不同层在处理输入数据时生成的特征或嵌入。这些表示捕获了输入数据的不同层次的信息。1.层的表示(layerrepresentations)为了更好地理解这一概念,我们可以从以下几个方面进行解释:1.深度神经网络结构深度神经网络(DNN)通常由多个层组成,每
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比