手动搭建k8s-1.16.6高可用集群之部署flannel网络

kubernetes 要求集群内各节点(包括 master 节点)能通过 Pod 网段互联互通。flannel 使用 vxlan 技术为各节点创建一个可以互通的 Pod 网络,使用的端口为 UDP 8472(需要开放该端口,如公有云 AWS 等)。

flanneld 第一次启动时,从 etcd 获取配置的 Pod 网段信息,为本节点分配一个未使用的地址段,然后创建 flannedl.1 网络接口(也可能是其它名称,如 flannel1 等)。

flannel 将分配给自己的 Pod 网段信息写入 /run/flannel/docker 文件,docker 后续使用这个文件中的环境变量设置 docker0 网桥,从而从这个地址段为本节点的所有 Pod 容器分配 IP。

注意:

1、如果没有特殊指明,本文档的所有操作均在 k8s-01 节点上执行,然后远程分发文件和执行命令;

2、flanneld 与 etcd v3.4.x不兼容,需要保证安装的 etcd 为 v3.3.x;

3、flanneld 与 docker 结合使用;

一、下载和分发flanneld二进制文件

cd /opt/k8s/work
mkdir flannel
wget https://github.com/coreos/flannel/releases/download/v0.11.0/flannel-v0.11.0-linux-amd64.tar.gz
tar -zxf flannel-v0.11.0-linux-amd64.tar.gz -C flannel

分发二进制文件到集群所有节点:

cat > deploy.sh << "EOF"
#!/bin/bash
cd /opt/k8s/work
source /opt/k8s/bin/environment.sh 
for node_ip in ${NODE_IPS[@]}
do
    echo ">>> ${node_ip}"
    scp flannel/{flanneld,mk-docker-opts.sh} root@${node_ip}:/opt/k8s/bin/
    ssh root@${node_ip} "chmod +x /opt/k8s/bin/*"
done
EOF

二、创建flannel证书和私钥

flanneld 从 etcd 集群存取网段分配信息,而 etcd 集群启用了双向 x509 证书认证,所以需要为 flanneld 生成证书和私钥。

创建证书签名请求:

cd /opt/k8s/work

cat > flanneld-csr.json <<EOF
{
  "CN": "flanneld",
  "hosts": [],
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "BeiJing",
      "L": "BeiJing",
      "O": "k8s",
      "OU": "4Paradigm"
    }
  ]
}
EOF
  • 该证书只会被 kubectl 当做 client 证书使用,所以 hosts 字段为空;

生成证书和私钥:

$ cfssl gencert -ca=/opt/k8s/work/ca.pem \
  -ca-key=/opt/k8s/work/ca-key.pem \
  -config=/opt/k8s/work/ca-config.json \
  -profile=kubernetes flanneld-csr.json | cfssljson -bare flanneld
  
$ ls flanneld*pem
flanneld-key.pem  flanneld.pem

将生成的证书和私钥分发到所有节点(master 和 worker):

cat > deploy.sh << "EOF"
#!/bin/bash
cd /opt/k8s/work
source /opt/k8s/bin/environment.sh 
for node_ip in ${NODE_IPS[@]}
do
    echo ">>> ${node_ip}"
    ssh root@${node_ip} "mkdir -p /etc/flanneld/cert"
    scp flanneld*.pem root@${node_ip}:/etc/flanneld/cert
done
EOF

三、向etcd写入集群Pod网段信息

注意:本步骤只需执行一次

$ cd /opt/k8s/work
$ source /opt/k8s/bin/environment.sh

$ etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/opt/k8s/work/ca.pem \
  --cert-file=/opt/k8s/work/flanneld.pem \
  --key-file=/opt/k8s/work/flanneld-key.pem \
  mk ${FLANNEL_ETCD_PREFIX}/config '{"Network":"'${CLUSTER_CIDR}'", "SubnetLen": 21, "Backend": {"Type": "vxlan"}}'
  • flanneld 当前版本 (v0.11.0) 不支持 etcd v3,故使用 etcd v2 API 写入配置 key 和网段数据;
  • 写入的 Pod 网段 ${CLUSTER_CIDR} 地址段(如 /16)必须小于 SubnetLen,必须与 kube-controller-manager--cluster-cidr 参数值一致;

四、创建 flanneld 的 systemd unit 文件

$ cd /opt/k8s/work
$ source /opt/k8s/bin/environment.sh

$ cat > flanneld.service << EOF
[Unit]
Description=Flanneld overlay address etcd agent
After=network.target
After=network-online.target
Wants=network-online.target
After=etcd.service
Before=docker.service

[Service]
Type=notify
ExecStart=/opt/k8s/bin/flanneld \\
  -etcd-cafile=/etc/kubernetes/cert/ca.pem \\
  -etcd-certfile=/etc/flanneld/cert/flanneld.pem \\
  -etcd-keyfile=/etc/flanneld/cert/flanneld-key.pem \\
  -etcd-endpoints=${ETCD_ENDPOINTS} \\
  -etcd-prefix=${FLANNEL_ETCD_PREFIX} \\
  -iface=${IFACE} \\
  -ip-masq
ExecStartPost=/opt/k8s/bin/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/docker
Restart=always
RestartSec=5
StartLimitInterval=0

[Install]
WantedBy=multi-user.target
RequiredBy=docker.service
EOF
  • mk-docker-opts.sh 脚本将分配给 flanneld 的 Pod 子网段信息写入 /run/flannel/docker 文件,后续 docker 启动时使用这个文件中的环境变量配置 docker0 网桥;
  • flanneld 使用系统缺省路由所在的接口与其它节点通信,对于有多个网络接口(如内网和公网)的节点,可以用 -iface 参数指定通信接口;
  • flanneld 运行时需要 root 权限;
  • -ip-masq: flanneld 为访问 Pod 网络外的流量设置 SNAT 规则,同时将传递给 Docker 的变量 --ip-masq/run/flannel/docker 文件中)设置为 false,这样 Docker 将不再创建 SNAT 规则; Docker 的 --ip-masq 为 true 时,创建的 SNAT 规则比较“暴力”:将所有本节点 Pod 发起的、访问非 docker0 接口的请求做 SNAT,这样访问其他节点 Pod 的请求来源 IP 会被设置为 flannel.1 接口的 IP,导致目的 Pod 看不到真实的来源 Pod IP。 flanneld 创建的 SNAT 规则比较温和,只对访问非 Pod 网段的请求做 SNAT。

五、分发 flanneld systemd unit文件到所有节点

cat > deploy.sh << "EOF"
#!/bin/bash
cd /opt/k8s/work
source /opt/k8s/bin/environment.sh 
for node_ip in ${NODE_IPS[@]}
do
    echo ">>> ${node_ip}"
    scp flanneld.service root@${node_ip}:/etc/systemd/system/
done
EOF

六、启动flanneld服务

cat > deploy.sh << "EOF"
#!/bin/bash
cd /opt/k8s/work
source /opt/k8s/bin/environment.sh 
for node_ip in ${NODE_IPS[@]}
do
    echo ">>> ${node_ip}"
    ssh root@${node_ip} "systemctl daemon-reload && systemctl enable flanneld && systemctl restart flanneld"
done
EOF

七、检查启动结果

cat > deploy.sh << "EOF"
#!/bin/bash
cd /opt/k8s/work
source /opt/k8s/bin/environment.sh 
for node_ip in ${NODE_IPS[@]}
do
    echo ">>> ${node_ip}"
    ssh root@${node_ip} "systemctl status flanneld|grep Active"
done
EOF

输出结果如下:

$ ./deploy.sh 
>>> 192.168.0.71
   Active: active (running) since Thu 2020-04-23 14:10:55 CST; 5min ago
>>> 192.168.0.72
   Active: active (running) since Thu 2020-04-23 14:10:57 CST; 5min ago
>>> 192.168.0.73
   Active: active (running) since Thu 2020-04-23 14:10:58 CST; 5min ago

看到状态为 active (running),表示启动成功。如果失败,用下面的命令查看日志:

journalctl -u flanneld

八、查看分配给各flanneld的Pod网段信息

查看集群 Pod 网段(/16):

$ source /opt/k8s/bin/environment.sh

$ etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/etc/kubernetes/cert/ca.pem \
  --cert-file=/etc/flanneld/cert/flanneld.pem \
  --key-file=/etc/flanneld/cert/flanneld-key.pem \
  get ${FLANNEL_ETCD_PREFIX}/config

输出:

{"Network":"172.30.0.0/16", "SubnetLen": 21, "Backend": {"Type": "vxlan"}}

查看已经分配的 Pod 子网段列表(/21):

$ source /opt/k8s/bin/environment.sh

$ etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/etc/kubernetes/cert/ca.pem \
  --cert-file=/etc/flanneld/cert/flanneld.pem \
  --key-file=/etc/flanneld/cert/flanneld-key.pem \
  ls ${FLANNEL_ETCD_PREFIX}/subnets

输出(结果视部署情况而定):

/subnets/172.30.128.0-21
/subnets/172.30.88.0-21
/subnets/172.30.104.0-21

查看某一 Pod 网段对应的节点 IP 和 flannel 接口地址:

$ source /opt/k8s/bin/environment.sh

$ etcdctl \
  --endpoints=${ETCD_ENDPOINTS} \
  --ca-file=/etc/kubernetes/cert/ca.pem \
  --cert-file=/etc/flanneld/cert/flanneld.pem \
  --key-file=/etc/flanneld/cert/flanneld-key.pem \
  get ${FLANNEL_ETCD_PREFIX}/subnets/172.30.128.0-21

输出(结果视部署情况而定):

{"PublicIP":"192.168.0.71","BackendType":"vxlan","BackendData":{"VtepMAC":"e2:5f:51:da:76:54"}}
  • 172.30.128.0/21 被分配给节点 k8s-01(192.168.0.71);
  • VtepMAC 为 k8s-01 节点的 flannel.1 网卡 MAC 地址;

九、检查节点 flannel 网络信息

$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 00:0c:29:e7:5d:81 brd ff:ff:ff:ff:ff:ff
    inet 192.168.0.71/24 brd 192.168.0.255 scope global noprefixroute eth0
       valid_lft forever preferred_lft forever
3: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN group default 
    link/ether e2:5f:51:da:76:54 brd ff:ff:ff:ff:ff:ff
    inet 172.30.128.0/32 scope global flannel.1
       valid_lft forever preferred_lft forever
  • flannel.1 网卡的地址为分配的 Pod 子网段的第一个 IP(.0),且是 /32 的地址;
$ ip route show | grep flannel.1
172.30.88.0/21 via 172.30.88.0 dev flannel.1 onlink 
172.30.104.0/21 via 172.30.104.0 dev flannel.1 onlink 
  • 到其它节点 Pod 网段请求都被转发到 flannel.1 网卡;
  • flanneld 根据 etcd 中子网段的信息,如 ${FLANNEL_ETCD_PREFIX}/subnets/172.30.128.0-24 ,来决定进请求发送给哪个节点的互联 IP;

十、验证各节点能通过 Pod 网段互通

各节点上部署 flannel 后,检查是否创建了 flannel 接口(名称可能为 flannel0、flannel.0、flannel.1 等):

cat > deploy.sh << "EOF"
#!/bin/bash
cd /opt/k8s/work
source /opt/k8s/bin/environment.sh 
for node_ip in ${NODE_IPS[@]}
do
    echo ">>> ${node_ip}"
    ssh ${node_ip} "/usr/sbin/ip addr show flannel.1|grep -w inet"
done
EOF

输出:

>>> 192.168.0.71
    inet 172.30.128.0/32 scope global flannel.1
>>> 192.168.0.72
    inet 172.30.88.0/32 scope global flannel.1
>>> 192.168.0.73
    inet 172.30.104.0/32 scope global flannel.1

在各节点上 ping 所有flannel 接口 IP,确保能通:

注意:把其中的IP段换成自己环境的。

cat > deploy.sh << "EOF"
#!/bin/bash
cd /opt/k8s/work
source /opt/k8s/bin/environment.sh 
for node_ip in ${NODE_IPS[@]}
do
    echo ">>> ${node_ip}"
    ssh ${node_ip} "ping -c 1 172.30.128.0"
    ssh ${node_ip} "ping -c 1 172.30.88.0"
    ssh ${node_ip} "ping -c 1 172.30.104.0"
done
EOF

输出:

$ ./deploy.sh 
>>> 192.168.0.71
PING 172.30.128.0 (172.30.128.0) 56(84) bytes of data.
64 bytes from 172.30.128.0: icmp_seq=1 ttl=64 time=0.073 ms

--- 172.30.128.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.073/0.073/0.073/0.000 ms
PING 172.30.88.0 (172.30.88.0) 56(84) bytes of data.
64 bytes from 172.30.88.0: icmp_seq=1 ttl=64 time=0.427 ms

--- 172.30.88.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.427/0.427/0.427/0.000 ms
PING 172.30.104.0 (172.30.104.0) 56(84) bytes of data.
64 bytes from 172.30.104.0: icmp_seq=1 ttl=64 time=0.507 ms

--- 172.30.104.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.507/0.507/0.507/0.000 ms
>>> 192.168.0.72
PING 172.30.128.0 (172.30.128.0) 56(84) bytes of data.
64 bytes from 172.30.128.0: icmp_seq=1 ttl=64 time=0.527 ms

--- 172.30.128.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.527/0.527/0.527/0.000 ms
PING 172.30.88.0 (172.30.88.0) 56(84) bytes of data.
64 bytes from 172.30.88.0: icmp_seq=1 ttl=64 time=0.077 ms

--- 172.30.88.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.077/0.077/0.077/0.000 ms
PING 172.30.104.0 (172.30.104.0) 56(84) bytes of data.
64 bytes from 172.30.104.0: icmp_seq=1 ttl=64 time=0.468 ms

--- 172.30.104.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.468/0.468/0.468/0.000 ms
>>> 192.168.0.73
PING 172.30.128.0 (172.30.128.0) 56(84) bytes of data.
64 bytes from 172.30.128.0: icmp_seq=1 ttl=64 time=0.455 ms

--- 172.30.128.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.455/0.455/0.455/0.000 ms
PING 172.30.88.0 (172.30.88.0) 56(84) bytes of data.
64 bytes from 172.30.88.0: icmp_seq=1 ttl=64 time=0.144 ms

--- 172.30.88.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.144/0.144/0.144/0.000 ms
PING 172.30.104.0 (172.30.104.0) 56(84) bytes of data.
64 bytes from 172.30.104.0: icmp_seq=1 ttl=64 time=0.047 ms

--- 172.30.104.0 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.047/0.047/0.047/0.000 ms

你可能感兴趣的:(#,kubernetes)