- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- Hive 事务表(ACID)问题梳理
文章目录问题描述分析原因什么是事务表概念事务表和普通内部表的区别相关配置事务表的适用场景注意事项设计原理与实现文件管理格式参考博客问题描述工作中需要使用pyspark读取Hive中的数据,但是发现可以获取metastore,外部表的数据可以读取,内部表数据有些表报错信息是:AnalysisException:org.apache.hadoop.hive.ql.metadata.HiveExcept
- Python与大数据:Spark和PySpark实战教程
天天进步2015
python大数据pythonspark
引言在大数据时代,数据处理和分析能力成为核心竞争力。ApacheSpark作为新一代大数据计算引擎,以其高性能、易用性和强大的生态系统,成为数据工程师和分析师的首选工具。而PySpark作为Spark的Python接口,让Python开发者能够轻松驾驭大规模数据处理。本教程将带你系统了解Spark与PySpark的核心原理、环境搭建、典型应用场景及实战案例,助你快速上手大数据分析。目录Spark简
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- pyspark底层浅析
lo_single
Sparksparkpython
pyspark底层浅析pyspark简介pyspark是Spark官方提供的API接口,同时pyspark也是Spark中的一个程序。在terminal中输入pyspark指令,可以打开python的shell,同时其中默认初始化了SparkConf和SparkContext在编写Spark应用的.py文件时,可以通过importpyspark引入该模块,并通过SparkConf对Spark的启动
- PySpark 使用pyarrow指定版本
SLUMBER_PARTY_
pyspark
背景说明在PySpark3.1.3环境中,当需要使用与集群环境不同版本的PyArrow(如1.0.0版本)时,可以通过以下方法实现,而无需更改集群环境配置完整操作说明去pyarrow·PyPI下载对应版本的whl文件后缀whl直接改成zip解压后有两个文件夹,分别是pyarrow和pyarrow-1.0.0.dist-info直接把那两个文件夹打包成pyarrow.zip因为pyarrow里不是单
- Spark入门指南:大数据处理的第一个Hello World程序
AI天才研究院
ChatGPTAI大模型应用入门实战与进阶spark大数据分布式ai
Spark入门指南:大数据处理的第一个HelloWorld程序关键词:Spark、大数据处理、RDD、WordCount、PySpark、分布式计算、HelloWorld程序摘要:本文以经典的WordCount程序为切入点,系统讲解ApacheSpark的核心概念、开发流程与实战技巧。通过从环境搭建到代码实现的全流程解析,帮助大数据初学者快速掌握Spark的基础操作,理解分布式计算的核心逻辑。文章
- pyspark==windows单机搭建
一个java开发
数据分析spark
下载安装JDK17,配置JAVA_HOME下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOMEIndexof/hadoop/common/hadoop-3.3.5GitHub-cdarlint/winutils:winutils.exehadoop.dllandhdfs.dllbinariesforhadoopwindows下载spark配置SPARK_HOME安装py
- 大数据领域的数据工程:从理论到实践
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据ai
大数据领域的数据工程:从理论到实践关键词:数据工程、大数据处理、ETL/ELT、数据湖、数据仓库、数据治理、云计算摘要:本文系统解析大数据领域的数据工程体系,从理论架构到实战落地展开深度探讨。首先构建数据工程核心概念框架,解析数据集成、存储、处理、治理的技术原理;其次通过Python和PySpark代码实现数据清洗、分布式处理等关键算法;结合真实项目案例演示数据管道搭建与优化;最后分析金融、电商等
- pyspark依赖环境设置
pypspark异常py49-protocol.Py433avaError:Anerroroccurredwhilecalling0117.sql.org.apache.spark.SparkException:Jobabortedduetostagefailure:Task®instage0.0failed4times,mostrecentfailure:Losttask0.3instage0.
- 使用 PySpark 从 Kafka 读取数据流并处理为表
Bug Spray
kafkalinq分布式
使用PySpark从Kafka读取数据流并处理为表下面是一个完整的指南,展示如何通过PySpark从Kafka消费数据流,并将其处理为可以执行SQL查询的表。1.环境准备确保已安装:ApacheSpark(包含SparkSQL和SparkStreaming)KafkaPySpark对应的Kafka连接器(通常已包含在Spark发行版中)2.完整代码示例frompyspark.sqlimportSp
- Hugging Face + Spark:打造高效的 NLP 大数据处理引擎(一)
在自然语言处理(NLP)领域,HuggingFace是不可或缺的处理库,而Spark则是大数据处理的必备工具。将两者的优势结合起来,可以实现高效的NLP大数据处理。以下是结合HuggingFace和Spark的两种方法,基于Spark&PySpark3.3.1版本进行探索。方法一:升级Spark版本至3.4及以上如果你愿意升级Spark版本到3.4或更高版本,那么结合HuggingFace和Spa
- linux下载pyspark并修改默认python版本
yishan_3
chrome前端
使用deadsnakesPPA(适用于旧版Ubuntu)如果官方仓库没有Python3.8,可通过第三方PPA安装。步骤1:添加PPA仓库bash复制下载sudoadd-apt-repositoryppa:deadsnakes/ppasudoaptupdate步骤2:安装Python3.8bash复制下载sudoaptinstallpython3.8设置Python3.8为默认版本(可选)如果需要
- 关于Spark Shell的使用
2301_78557870
spark大数据分布式
Spark带有交互式的Shell,可在SparkShell中直接编写Spark任务,然后提交到集群与分布式数据进行交互,并且可以立即查看输出结果。SparkShell提供了一种学习SparkAPI的简单方式,可以使用Scala或Python语言进行程序的编写。一、SparkShell简介SparkShell是Spark提供的交互式命令行工具,支持Scala(默认)和Python(PySparkSh
- RDD的自定义分区器-案例
依年南台
大数据
以下是一个更具体的RDD自定义分区器案例,展示如何根据业务需求实现自定义分区逻辑。案例:按用户地区进行数据分区假设我们有一个电商交易数据集,包含user_id(用户ID)和region(地区)字段。我们希望根据用户所在地区将数据分区,以便后续对每个地区的数据进行独立分析。实现步骤定义地区到分区的映射规则实现自定义分区器应用分区器并验证结果代码实现python运行frompysparkimportS
- 使用Pyspark读取CSV文件并将数据写入数据库(大数据)
雨中徜徉的思绪漫溢
数据库大数据
使用Pyspark读取CSV文件并将数据写入数据库(大数据)近年来,随着大数据技术的快速发展,大数据处理和分析已经成为许多企业和组织的重要任务之一。Pyspark作为ApacheSpark的PythonAPI,为我们提供了强大的工具来处理和分析大规模数据集。在本文中,我们将学习如何使用Pyspark读取CSV文件,并将数据写入数据库。首先,我们需要安装和配置Pyspark。请确保你已经安装了Jav
- Spark安装
姬激薄
spark
一、本地环境安装(单机模式)适合开发和测试,支持Windows、Linux、macOS。1.前置条件Java:Java8或更高版本(建议OpenJDK11+)。bash#检查Java版本java-versionPython(可选):PySpark需要Python3.6+。Scala(可选):若使用ScalaAPI,需安装Scala2.12/2.13。2.下载与安装下载Spark:从ApacheSp
- 【小贪】程序员必备:Shell、Git、Vim常用命令
贪钱算法还我头发
小小宝典gitvim编辑器shellsshlinux
近期致力于总结科研或者工作中用到的主要技术栈,从技术原理到常用语法,这次查缺补漏当作我的小百科。主要技术包括:✅数据库常用:MySQL,HiveSQL,SparkSQL✅大数据处理常用:Pyspark,Pandas⚪图像处理常用:OpenCV,matplotlib⚪机器学习常用:SciPy,Sklearn⚪深度学习常用:Pytorch,numpy⚪常用数据结构语法糖:itertools,colle
- pyspark on yarn 配置
强强0007
pysparkhadoop大数据分布式
1yarn模式出错pysparkonyarn在pycharm上执行出现以下问题:解决方案:在程序最前面添加如下程序importosos.environ["HADOOP_CONF_DIR"]="/opt/module/hadoop-3.1.3/etc/hadoop"2yarn模式配置2.1SparkSessionfrompyspark.sqlimportSparkSessionimportos
- RDD有哪几种创建方式
痕517
开发语言
RDD(弹性分布式数据集)有以下几种常见的创建方式:###从集合创建通过`parallelize()`方法将本地集合转换为RDD。这种方式适合在测试或处理小规模数据时使用,它能将本地的Python列表、Java数组等集合数据并行化到集群上。-**Python示例**:```pythonfrompysparkimportSparkContext#创建SparkContext对象sc=SparkCon
- scala连接mongodb_Spark教程(二)Spark连接MongoDB
weixin_39688035
scala连接mongodb
如何导入数据数据可能有各种格式,虽然常见的是HDFS,但是因为在Python爬虫中数据库用的比较多的是MongoDB,所以这里会重点说说如何用spark导入MongoDB中的数据。当然,首先你需要在自己电脑上安装spark环境,简单说下,在这里下载spark,同时需要配置好JAVA,Scala环境。这里建议使用Jupyternotebook,会比较方便,在环境变量中这样设置PYSPARK_DRIV
- 大数据毕业设计PySpark+Hadoop航班延误预测系统 航班可视化
QQ21503882
javaweb大数据课程设计hadoop
1.选题背景和意义(1)选题背景在旅行规划中,机票价格一直是旅客关注的重点。机票价格的波动不仅受季节、航线、航空公司等因素的影响,还受到市场供求关系、经济形势等因素的影响。因此,通过对机票价格进行预测分析,可以帮助旅客选择更合适的出行时间和机票购买策略,从而节省旅行成本。(2)意义提高乘客购票决策:基于Hadoop的飞机票价格预测能够提供乘客准确的价格预测信息,帮助他们选择合适的购票时间和最优的价
- Spark应用部署模式实例
qrh_yogurt
spark大数据分布式
Local模式新启动一个终端SparkSubmit#pyspark命令启动的进程,实际上就是启动了一个Spark应用程序SparkStandalone模式讲解:6321SecondaryNameNode#hadoop中HDFS第二数据存储节点,负责定期合并fsimage和editslog文件7475Jps6132DataNode#hadoop中HDFS的数据存储节点,负责存储实际的数据块,并响应来
- spark graphx自用学习笔记及pyspark项目实战(基于GraphX的航班飞行网图分析)
GDUT-orzzzzzz
学习笔记sparkpython大数据
这里写自定义目录标题0.前言1.概念1.1图计算的优势1.2图存储格式1.3GraphX存储模式1.4普通概念2.图的构建(待补充)2.1构建图的方法2.2构建图的过程3.图的操作4.算法5.实战5.1项目要求5.2环境5.3安装5.4代码5.5最终结果参考链接0.前言本篇博客自用,部分内容只包含概念,并且博主本身有一定spark和图论基础,部分模糊的地方,可自行查询。1.概念1.1图计算的优势基
- 在Azure Databricks中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
数据仓库pythonsparkazure云计算
在AzureDatabricks中使用PySpark实现缓慢变化维度(SCD)的三种核心类型,需结合SparkSQL和DataFrameAPI的特性,并利用DeltaLake的事务支持。以下是具体设计与实现步骤,以及测试用例:通过以下步骤,可在AzureDatabricks中高效实现SCD逻辑,确保数据历史可追溯且符合业务需求。类型1:覆盖旧值(OverwriteOldValue)设计要点直接更新
- 跨领域大数据抓取与融合:Python爬虫实战指南
Python爬虫项目
2025年爬虫实战项目大数据python爬虫人工智能开发语言easyui
目录引言跨领域大数据抓取与融合的背景与意义技术选型与工具介绍Python爬虫框架:Scrapy、BeautifulSoup、Selenium数据处理与存储:Pandas、NumPy、MongoDB数据融合与分析:PySpark、TensorFlow实战项目:跨领域数据抓取与融合项目概述数据抓取抓取电商数据抓取社交媒体数据抓取新闻数据数据清洗与预处理数据融合与分析代码实现与详细解析电商数据抓取代码社
- PySpark数据透视表操作指南
闯闯桑
大数据sparkpython
在PySpark中,可以使用pivot()方法实现类似Excel数据透视表的功能。以下是详细操作步骤和示例:1.基本语法df.groupBy([行维度列])\.pivot([列维度列])\.agg([聚合函数])\.fillna(0)#可选,填充空值2.示例数据假设有以下DataFrame(sales_df):+-------+----------+------+-------+|region|p
- 在AWS Glue中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
awsetlsql开发语言数据仓库
根据缓慢变化维度(SCD)的三种核心类型(类型1、类型2、类型3),以下是基于AWSGlue的实现设计、步骤及测试用例:一、AWSGlue实现SCD的设计与步骤1.SCD类型1(覆盖旧值)设计目标:直接更新目标表中的记录,不保留历史数据。技术选型:使用AWSGlueETL作业(PySpark)目标存储:S3(Parquet格式)或AmazonRedshift数据比对方式:基于业务键(如custom
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {