- 英伟达靠什么支撑起了4万亿?AI泡沫还能撑多久?
英伟达市值突破4万亿美元,既是AI算力需求爆发的直接体现,也暗含市场对未来的狂热预期。其支撑逻辑与潜在风险并存,而AI泡沫的可持续性则取决于技术、商业与地缘政治的复杂博弈。⚙️一、英伟达4万亿市值的核心支撑因素技术垄断与生态壁垒硬件优势:英伟达GPU在AI训练市场占有率超87%,H100芯片的FP16算力达1979TFLOPS,领先竞品3-5倍。CUDA生态:400万开发者构建的软件护城河,成为A
- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- Tensorflow-gpu运行时报错Non-OK-status: GpuLaunchKernel
GEM的左耳返
pythontensorflow深度学习python
Tensorflow-gpu运行时报错Non-OK-status:GpuLaunchKernel(FillPhiloxRandomKernelLaunch,num_blocks,block_size,0,d.stream(),gen,data,size,dist)status:Internal:invaliddevicefunctionFatalPythonerror:Aborted说明你安装的C
- PyTorch武侠演义 第一卷:初入江湖 第7章:矿洞中的计算禁制
空中湖
pytorch武侠演绎pytorch人工智能python
第一卷:初入江湖第7章:矿洞中的计算禁制矿洞深处罗盘残件在接近矿洞时突然发热,指针疯狂旋转。"就是这里,"欧阳长老抚摸着洞壁上的计算图刻痕,“TensorFlow帮用静态图封印了矿脉。”林小码看到:幽蓝矿脉构成巨大的计算图结构水晶矿簇随呼吸节奏明灭(CUDA核心)矿道中流淌着数据光流(内存带宽)"小心!"大师突然拉回林小码。他刚才踩中的矿砖下陷,触发岩壁上的机关——数十道计算图锁链从四面八方射来!
- 数字人克隆中SyncTalk算法介绍与部署过程
优秘智能UMI
人工智能ubuntu
SyncTalk算法介绍SyncTalk合成同步的头部说话视频,采用三平面哈希表示来保持主体身份。它可以生成同步的嘴唇动作、面部表情和稳定的头部姿势,并恢复头发细节以创建高分辨率视频。部署在Linux中部署该项目,在Ubuntu18.04、Pytorch1.12.1和CUDA11.3上测试。gitclonehttps://github.com/ZiqiaoPeng/SyncTalk.gitcdSy
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- [mmcv系列] pip安装mmcv记录
文章目录1.查看torch和cuda版本1.安装1.1从预编译包安装1.2源码编译安装2.校验报错:frommmcvimportConfig可以直接参考教程:找到pip安装,选择自己的cuda和torch版本,复制指令到终端安装即可:1.查看torch和cuda版本终端运行指令:python-c'importtorch;print(torch.__version__);print(torch.ve
- 【代码问题】【包安装】MMCV
Catching Star
python
可以参考这篇博客【MMCV】MMCV安装与踩坑-CSDN博客MMCV对于版本要求非常严格。python最好是3.10或者3.9,而且torch和cuda版本一定要对应。比如我是cu118,就可以这样安装:#举例:torch2.1.0+cu118pipinstallmmcv-full==1.7.2\-fhttps://download.openmmlab.com/mmcv/dist/cu118/to
- PyTorch武侠演义 第一卷:初入江湖 第5章:玉如意的秘密
第一卷:初入江湖第5章:玉如意的秘密百年秘辛藏经阁最深处,大师掀开尘封的《门派大事记》,指向一幅泛黄的画卷:“看,这就是百年前的优化器长老——欧阳调参。”画中人手持玉如意,面前悬浮着九个水晶球。林小码凑近细看,发现如意上刻着「lr=0.001」。“当年TensorFlow帮为何要盗损失玉佩?”大师叹息:“因为这块玉佩,正是控制玉如意能量的钥匙…”突然,书架后传来机关转动的咔嗒声。一道暗门缓缓打开,
- CIFAR-10 文件下载函数
谢小帅
函数挺有意思的,可能将来写项目会用到。importtensorflowastfimportosimportsysfromsix.movesimporturllibimporttarfileFLAGS=tf.app.flags.FLAGSFLAGS.data_dir='cifar10_data/'DATA_URL='http://www.cs.toronto.edu/~kriz/cifar-10-b
- 排名前十的编程语言及其详细对比
NurDroid
开发语言
根据2025年4月的最新TIOBE排行榜以及其他综合榜单,当前排名前十的编程语言及其详细对比如下:1.Python•排名:第1位•核心特点:简洁语法、动态类型、丰富的生态库(如NumPy、TensorFlow)。•应用领域:AI/机器学习、数据分析、自动化脚本、Web开发(Django/Flask框架)。•性能:解释型语言,执行速度较慢,但开发效率极高,适合快速原型设计。•趋势:持续领跑AI领域,
- 模型剪枝(分析)
yc_hu
剪枝python机器学习
1.函数入口与设备初始化defget_layer_level_pruning_rate(args):device=torch.device("cuda"iftorch.cuda.is_available()else"cpu")功能:检测可用设备(优先使用GPU),为后续模型加载做准备。2.数据加载与评估函数定义train_loader,val_loader,test_loader,criterio
- Tensorflow的基础知识(二)
climb66的夏天
1.张量的索引与切片操作通过索引与切片操作可以提取张量的部分数据,它们的使用频率非常高。1.1索引操作在Tensorflow中,支持基本的[i][j]···标准索引方式,也支持通过逗号分隔索引号的索引方式。例如:x=tf.random.normal([4,32,32,3])x[0]#取第一张图片的数据x[0][1]#取第一张图片的第二行x[0][1][2]#取第一张图片,第二行,第三列的数据x[2
- OpenCV结合深度学习进行图像分类
香蕉可乐荷包蛋
#OpenCVopencv深度学习分类
文章目录1.支持的深度学习框架和模型格式2.模型加载方式加载预训练模型示例:3.图像预处理流程4.前向传播与推理5.结果解析与后处理6.性能优化技巧启用GPU加速:批量处理:代码示例在资源中有上传1.支持的深度学习框架和模型格式OpenCV的DNN模块支持多种主流深度学习框架训练的模型:TensorFlow:支持冻结图(.pb)和SavedModel格式Caffe:支持.prototxt和.caf
- MNIST 手写数字识别模型分析
橘子编程
Python学习指南pythonmatplotlib
功能概述这段代码实现了一个基于TensorFlow和Keras的MNIST手写数字识别模型。主要功能包括:加载并预处理MNIST数据集构建一个简单的全连接神经网络模型训练模型并评估其性能使用训练好的模型进行预测保存和加载模型代码解析1.导入必要的库importmatplotlibimporttensorflow.kerasaskerasimporttensorflowastfimportnumpy
- 20250704-基于强化学习在云计算环境中的虚拟机资源调度研究
基于强化学习在云计算环境中的虚拟机资源调度研究随着云计算规模的持续扩大,数据中心虚拟机资源调度面临动态负载、异构资源适配及多目标优化等挑战。传统启发式算法在复杂场景下易陷入局部最优,而深度强化学习(DRL)凭借序贯决策能力为该问题提供了新路径。本研究以动态多目标组合优化理论为基础,结合CloudSimPy仿真框架与TensorFlow,构建“仿真-训练-验证”闭环调度系统,重点设计动态加权多目标奖
- LLaMA-Factory快速入门
@BangBang
LLMllama
文章目录1.背景2.环境准备2.1硬件要求2.2CUDA和Pytorch环境2.3模型下载2.4模型推理3.自定义数据集构建4.基于LoRA的sft指令微调4.1Lora微调训练4.2动态合并LoRA的推理4.3训练效果评估4.4LoRA模型合并导出5.webuiboard的使用5.1使用介绍5.2APIServer的启动与调用6进阶6.1大模型主流评测benchmark6.2部署Ollama1.
- 【大模型】Hugging Face常见模型格式详解
EulerBlind
大模型LLM人工智能语言模型
HuggingFace作为全球最大的机器学习模型社区,支持多种不同的模型格式。这些格式各有特点,适用于不同的使用场景。本文将详细介绍HuggingFace上常见的模型格式,帮助开发者选择合适的模型格式。模型格式分类概览HuggingFace上的模型格式主要可以分为以下几类:1.原始框架格式PyTorch格式(.bin,.pt,.pth)TensorFlow格式(.h5,.pb,SavedModel
- Python依赖冲突
若宮いヴ
PythonPython依赖冲突包管理
笔者在安装scikit-image包时发现tensorflowimport时直接崩溃,后发现scikit-image(后简称skimage)和tensorflow-gpu(后简称tensorflow)都依赖于numpy包,不幸的是,最新版本的scikit-image和tensorflow依赖的numpy包版本不相同并且互相不兼容(o=^•ェ•)o┏━┓,笔者也曾经在各搜索引擎寻找解决方案……无非是
- PyTorch深度学习工具箱整理总结
前网易架构师-高司机
深度学习+AIpytorch
一、pytorch简介Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对GPU加速的深度神经网络(DNN)编程。Torch是一个经典的对多维矩阵数据进行操作的张量(tensor)库,在机器学习和其他数学密集型应用有广泛应用。与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。但由于Torch语言采用Lu
- OpenCV Mat UMat GpuMat Matx HostMem InputArray等设计哲学
我是李武涯
opencv人工智能计算机视觉c++
一、概览:GpuMat对应于cuda;HostMem可以看作是一种特殊的Mat,其存储对应cuda在主机分配的锁页内存,可以不经显示downloadupload自动转变成GpuMat(但是和GpuMat并无继承关系);UMat对应于opencl的存储Matx指代常量Mat,编译时即确定:InputArray则是一种代理模式。注意,InputAray和MatUMatGpuMatMatx等无继承关系!
- WSL2部署训练YOLOv11之环境配置(2025年4月19日)
鱼圆食不食
YOLO
一、前言今天尝试在WSL2环境中部署训练YOLOv11,顺便把环境配置好。二、安装CUDA由于WSL2中并不能直接使用宿主机的显卡,所以需要安装CUDAonWSL以安装NVIDIA驱动到WSL中。注意必须是WSL2,WSL2对GPU的支持使这些应用程序能够受益于GPU加速计算,WSL1不支持。打开cmd或pwsh更新一下WSL内核:wsl.exe--update确保宿主机已安装最新的NVIDIAG
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- cuda编程python接口_使用Python写CUDA程序的方法
weixin_39822184
cuda编程python接口
使用Python写CUDA程序有两种方式:*Numba*PyCUDAnumbapro现在已经不推荐使用了,功能被拆分并分别被集成到accelerate和Numba了。例子numbaNumba通过及时编译机制(JIT)优化Python代码,Numba可以针对本机的硬件环境进行优化,同时支持CPU和GPU的优化,并且可以和Numpy集成,使Python代码可以在GPU上运行,只需在函数上方加上相关的指
- Python成第四个支持CUDA的编程语言
Python成第四个支持CUDA的编程语言3月19日NVIDIA的GTC2013图形技术大会将开幕,在此之前会有很多宣传造势内容,其中最重大也是最主要的就是NVIDIA老总黄仁勋的开幕词了,其他合作伙伴也会发布各自的演讲。ContinuumAnalytics联合NVIDIA宣布将会引入新的PythonCUDA编译器——NumbaPro,Python也成为继C、C++以及Fortan之后的第四个支持
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi