- Python, C ++开发全国研学基地查询与管理APP
Geeker-2025
pythonc++
以下是基于Python和C++开发全国研学基地查询与管理APP的技术方案,结合高性能数据处理、混合语言开发及教育行业合规性要求:---###**一、核心功能架构**```mermaidgraphTDA[用户端APP]-->B{API网关}C[管理端平台]-->BB-->D[Python业务微服务]D-->E[C++数据处理引擎]D-->F[时空数据库集群]E-->G[智能推荐系统]F-->H[可视
- 因果推断推荐系统工具箱 - PRS(二)
processor4d
文章名称【WSDM-2021】【UniversityofVirginia-Google】Non-ClicksMeanIrrelevant?PropensityRatioScoringAsaCorrection核心要点上一节讲解了在unbiasL2R的场景中,基于pairwise比较的损失函数的IPS的方法存在与真实评估指标偏离的问题,这一节讲解如何环节这一问题,并学习模型参数。方法细节问题引入作者
- 深入理解 Top-K 问题:高效的 nlogk 算法及 C++ 实现
在日常开发和算法面试中,Top-K问题是一类非常常见的场景。例如"找出数组中前K个最大的元素"、"统计热门搜索词"、"推荐系统中的热门商品"等,都可以归结为Top-K问题。本文将详细讲解如何用时间复杂度为O(nlogk)的高效算法解决这类问题,并通过C++代码实现具体方案。一、什么是Top-K问题?Top-K问题可以抽象为:从含有n个元素的集合中,找出其中最大(或最小)的k个元素。常见的应用场景包
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 双塔模型(Two-Tower Model)推荐系统实践
双塔模型双塔模型(Two-TowerModel)是一种常用的推荐系统或搜索排序模型架构,由两个独立的神经网络(即“双塔”)组成,分别处理用户和物品的特征,最后通过相似度计算(如点积、余弦相似度)得到匹配分数。Rust因其高性能和安全性,适合实现此类模型。双塔模型的定义双塔模型(Dual-TowerModel)是一种深度学习架构,由两个独立的神经网络塔(Tower)组成,分别处理不同的输入数据,最后
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- 基于Android studio的城市景区旅游导航与推荐系统
QQ242219979
androidstudio旅游android
随着时代的发展和进步,越来越多人选择在空闲的时间出去旅游,人们要前往陌生的城市旅游,就不可避免地会出现迷路,不知道景点等情况,基于此,旅游app变成了游客的热门选择,兼顾导航与热门景点推荐,方便游客查询路线的同时也能为游客推荐一些热门的旅游景点,让游客更加方便快捷的找到想去的地方,有一个更加舒适的旅游体验。苏州作为热门旅游城市,其中姑苏区经典密集,但是路线复杂,人流密集,游客来到这里,不知道该去哪
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- (附源码)计算机毕业设计SSM健康饮食推荐系统
学姐计算机毕设程序
mybatisjavamysql
(附源码)计算机毕业设计SSM健康饮食推荐系统项目运行环境配置:Jdk1.8+Tomcat7.0+Mysql+HBuilderX(Webstorm也行)+Eclispe(IntelliJIDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:SSM+mybatis+Maven+Vue等等组成,B/S模式+Maven管理等等。环境需要1.运行环境:最好是javajdk1.8,我们在这
- 如何面试AI产品经理职位?
从美团AI产品经理岗位的面试题来看,该岗位要求技术深度、产品思维和伦理意识的高度融合。以下是系统分析及准备建议:一、AI产品经理核心职责技术桥梁:将业务需求转化为技术方案(如LLM优化、推荐系统设计)全链路管理:主导AI产品从需求分析、模型选型、效果验证到上线的全流程风险控制:识别并解决模型偏见、幻觉、数据安全等伦理风险性能优化:平衡算法效果与工程约束(如推理速度、资源消耗)价值量化:设计评估体系
- Python全站爬取与知识图谱构建实战:从数据采集到语义建模的全流程指南
Python爬虫项目
python知识图谱easyui信息可视化开发语言爬虫人工智能
引言随着信息爆炸时代的到来,如何系统化地获取并结构化网站上的海量信息,成为数据科学和人工智能领域的重要课题。知识图谱作为将结构化数据和语义联系可视化的强大工具,正广泛应用于搜索引擎、推荐系统、智能问答等领域。本文将系统讲解如何用Python实现对目标网站的全站爬取,并结合自然语言处理技术,自动抽取实体与关系,最终构建成知识图谱。全流程涵盖爬取策略、信息抽取、知识融合及可视化,配合丰富的代码示例,助
- 使用 QLExpress 构建灵活可扩展的业务规则引擎
目录一、什么是QLExpress?二、推荐系统中的规则脚本应用1场景描述2推荐规则脚本(QLExpress)3系统实现4执行结果5推荐系统应用建议三、风控系统中的规则判定1场景描述2风控规则脚本(QLExpress)3系统实现4执行结果5风控系统应用建议四、设计建议在大型系统中,规则引擎的存在使业务逻辑从代码中解耦出来,使得系统具备更高的灵活性与可维护性。阿里巴巴开源的QLExpress正是一款轻
- 基于定制开发开源AI智能名片S2B2C商城小程序源码的搜索框个性化推荐机制研究
摘要:本文聚焦于定制开发开源AI智能名片S2B2C商城小程序源码场景下的搜索框个性化推荐机制。通过分析搜索框作为信息流槽位的产品形态特性,结合开源AI大模型与S2B2C模式的技术融合优势,提出基于用户强兴趣/即时兴趣的动态推荐策略。研究揭示了定制化开发在破解传统搜索框静态局限中的关键作用,并通过实证案例验证了该机制对提升用户转化率与平台GMV的显著效果,为新零售场景下的智能推荐系统设计提供了理论依
- Eureka在大数据推荐系统中的服务治理实践
大数据洞察
eureka大数据云原生ai
Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析元数据框架标题:Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析关键词:Eureka;服务治理;大数据推荐系统;分布式架构;服务发现;高可用性;动态扩展摘要:本文结合Eureka的核心特性与大数据推荐系统的需求,从第一性原理推导、架构设计、实现机制到实际应用,全面解析Eureka在推荐系统中的服务治理实践。通过
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- 怎么能得到各种淘宝优惠券呢?领取淘宝优惠券的平台有哪些?
氧惠评测
要得到各种淘宝优惠券,可以通过以下几种途径:一、使用第三方优惠券平台除了直接在淘宝平台领取外,还可以使用第三方优惠券平台来获取更多的优惠券资源。这些平台通常会与淘宝商家合作,提供额外的优惠券和返利服务。以下是一些常见的领取淘宝优惠券的平台:氧惠APP特点:氧惠APP不仅提供了淘宝的优惠券,还涵盖了其他主流电商平台和生活服务平台,如美团、饿了么等。它以其全面的优惠信息和精准的推荐系统赢得了用户的喜爱
- 智能体学习记录 一
罗同学213
学习
智能体是什么智能体(IntelligentAgent)是一种能够感知周围环境、自主决策并执行行动以实现特定目标的智能化系统或程序。它可以是软件(如聊天机器人)、硬件(如机器人),或两者结合的实体,核心特征包括:自主性:无需人工实时干预,独立运行(如自动驾驶车辆避障)。反应性:实时感知环境变化并快速响应(如智能家居调节温度)。目标导向:基于预设目标优化行动(如推荐系统最大化用户点击率)。学习能力:通
- java毕业设计源码案例-基于ssm+协同过滤的个性化小说推荐系统设计与实现(源码+LW+部署文档+全bao+远程调试+代码讲解等)
项目帮
springbootjava计算机毕设java课程设计开发语言
博主介绍:✌️码农一枚,专注于大学生项目实战开发、讲解和毕业文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌️技术范围::小程序、SpringBoot、SSM、JSP、Vue、PHP、Java、python、爬虫、数据可视化、大数据、物联网、机器学习等设计与开发。主要内容:免费功能设计,开题报告、任务书、全b
- 机器学习中的数据预处理:从入门到实践
耐思nice~
机器学习由浅入深-吴恩达机器学习人工智能
在当今的智能时代,机器学习已经渗透到我们生活的方方面面。比如我们常用的推荐系统,它能根据我们的浏览记录精准推送喜欢的商品或视频,这背后就离不开机器学习的支撑。而一个优秀的机器学习模型,离不开高质量的数据,数据预处理正是保证数据质量的关键环节,它就像烹饪前的食材处理,直接影响着最终“菜品”的口感,也就是模型的性能。今天,我们就来全面学习机器学习中数据预处理的关键步骤。一、数据预处理的重要性数据预处理
- 打造智能资讯引擎:基于 Python 的新闻数据爬取与个性化推荐系统实战全流程解析
程序员威哥
最新爬虫实战项目python开发语言
前言:数据时代的信息洪流,如何做到“千人千面”?在信息爆炸的时代,每天都有成千上万条新闻资讯涌现。如何从海量内容中挖掘出用户感兴趣的资讯?这不仅仅是爬虫技术的问题,更是数据建模与智能推荐算法的落地挑战。本篇文章将带你从零出发,构建一个具有实际应用价值的“个性化新闻阅读推荐系统”,从数据采集(爬虫)、文本处理(NLP)、兴趣建模(TF-IDF/协同过滤/Embedding)到推荐展示,覆盖整个推荐系
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- RabitQ 量化:既省内存又提性能
大禹智库
《向量数据库指南》《实战AI智能体》人工智能AI自动化大禹智库AI智能体向量数据库
突破高维向量内存瓶颈:MlivusCloudRaBitQ量化技术的工程实践与调优指南作为大禹智库高级研究员,拥有三十余年向量数据库与AI系统架构经验的我发现,在当今多模态AI落地的核心场景中,高维向量引发的内存资源消耗问题已成为制约系统规模化部署的“卡脖子”因素。特别是在大规模图像检索、个性化推荐系统和语义搜索引擎中,动辄数亿级别的向量数据需要实时处理,传统全精度索引方式会让内存资源消耗呈指数级增
- 基于用户画像的商品推荐系统
Dush32
机器学习人工智能python推荐算法
随着人工智能和大数据技术的进步,产品推荐系统成为了现代广告与电商平台中不可或缺的部分。通过深度挖掘用户的行为数据,能够为广告主提供精准的用户画像,从而更高效地推荐相关产品,提升购买转化率。本项目基于科大讯飞AI营销云大赛的赛题,目的是利用用户画像进行产品推荐,预测用户是否会购买相应商品。我们使用了机器学习的二分类模型,通过分析用户的性别、年龄、常驻地、机型等信息,来判断用户的付费行为。项目目标:本
- SpringBoot服装推荐系统实战
KENYCHEN奉孝
javaAIspringboot后端人工智能
SpringBoot服装推荐系统实例以下是基于SpringBoot实现的服装推荐系统的30个实例代码示例,涵盖核心功能和实现方法。用户注册与登录功能@RestController@RequestMapping("/api/auth")publicclassAuthController{@AutowiredprivateUserServiceuserService;@PostMapping("/re
- 知识表示与推理:AI智能的核心技术
AIGC应用创新大全
人工智能easyui前端ai
知识表示与推理:AI智能的核心技术1.引入与连接:AI如何"思考"世界?想象一下,当你询问智能助手:"我明天需要带伞吗?"它如何得出答案?它需要理解"带伞"与"天气"的关系,需要获取天气预报信息,需要推断明天的天气状况,最终综合这些"知识"给出建议。这一看似简单的过程,背后正是AI的核心能力:知识表示(如何"记住"信息)和推理(如何"思考"问题)。从Siri到AlphaGo,从推荐系统到自动驾驶,
- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- 图机器学习(13)——图相似性检测
图机器学习(13)——图相似性检测0.前言1.基于图嵌入的方法2.基于图核的方法3.基于GNN的方法4.应用0.前言图机器学习(machinelearning,ML)方法能广泛应用于各类任务,其应用场景涵盖从药物设计到社交网络推荐系统等多个领域。值得注意的是,由于这类方法在设计上具有通用性,同一算法可用于解决不同问题。学习图之间相似性的定量度量是一个关键问题。事实上,这是网络分析的重要步骤,同时也
- 推荐算法召回:架构理解
Jay Kay
c++推荐算法推荐算法架构算法
一、召回服务的定位与挑战召回层是推荐系统的第一道漏斗,负责从亿级候选集中筛选出千级别的相关项,其效果直接决定推荐效果的天花板。核心挑战包括:低延迟约束:需在50ms内完成海量候选检索;高召回率要求:98%的召回率需覆盖用户多样化兴趣;数据漂移应对:实时用户行为分布变化需动态适应;误杀控制:避免优质内容被过度过滤引发用户投诉。⚙️二、召回服务核心架构1.多路召回并行召回策略实现方式适用场景规则召回基
- 推荐系统中的归因分析
liliangcsdn
人工智能大数据
推荐系统中,归因分析(AttributionAnalysis)分析用户完成转化前到底是哪个渠道最起决定性作用。参考网络相关资料,常用的用户转化归因分析模型有如下6种,现收录参阅。1)最后点击归因转化全部归因于用户转化前最后一次点击的渠道。用户8月1日小红书种草,8月5日搜索官网,8月10日淘宝广告点击并完成下单。“最后点击归因”将此次转化归于淘宝广告,适用电商促销季投放归因。2)首次点击归因转化价
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持