- 【I3D 2024】Deblur-GS: 3D Gaussian Splatting from Camera Motion Blurred Images
__星辰大海__
论文阅读计算机视觉算法人工智能
文章目录1.李群与李代数2.相机运动模糊建模3.相机运动轨迹近似3.1.线性插值3.2.三次样条插值3.3.K阶贝塞尔曲线插值1.李群与李代数参考博客:视觉SLAM十四讲-李群与李代数。2.相机运动模糊建模运动模糊产生的原因是:相机在曝光期间捕捉到了移动的物体或自身发生了移动,导致场景中某些像素在成像过程中不是来自单一点,而是多个位置的光线的混合。假设在时间[t0,t0+T][t_0,t_0+T]
- 视觉slam--框架
猿饵块
人工智能
视觉里程计的框架传感器VO--frontendVO的缺点后端--backend后端对什么数据进行优化利用什么数据进行优化的后端是怎么进行优化的回环检测建图建图是指构建地图的过程。构建的地图是点云地图还是什么信息的地图?建图并没有一个固定的形式和算法,地图的构建形式不是固定的,需要视SLAM的应用需求而定。
- 视觉slam十四讲实践部分记录——ch2、ch3
kikikidult
slam学习slamc++笔记
ch2一、使用g++编译.cpp为可执行文件并运行(P30)g++helloSLAM.cpp./a.out运行二、使用cmake编译mkdirbuildcdbuildcmake..makeCMakeCache.txt文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的CMakeCache.txt文件,或者在构建过程中仍然引用了旧的路径。我们需要彻底清理并重新开始。详细解决步骤步骤1:彻底清理源
- 《视觉SLAM十四讲》自用笔记 第二讲:SLAM系统概述
BandieraRosa
slam笔记
在rm队伍里作为算法组梯队队员度过了一个赛季,为了促进和负责其他工作的算法组成员的交流,我决定在接下来的半个学期里(可能更快)读完这本书,并将其中的部分理论应用于我自制的雷达导航小车上。以下为第二讲的部分笔记:第二讲SLAM系统概述2.0目标1.理解一个视觉SLAM框架由哪几个模块组成,各模块的任务是什么。2.搭建编程环境,为开发和实验做准备2.1相机单目相机:只使用一个摄像头。无法通过单张照片获
- 【视觉SLAM基础(二):特征点提取与匹配】
Unpredictable222
SLAM算法算法自动驾驶ubuntuc++笔记opencv
前言在视觉SLAM中,特征点是连接连续图像帧的桥梁,是视觉里程计的核心。本文将详细介绍特征点的提取与匹配方法,以及如何利用这些特征点估计相机运动。原理部分只是简单介绍,详细的介绍大家可以去看高翔老师的《视觉SLAM十四讲》。1.特征点提取1.1特征点基本概念一个好的图像特征应该具有:可重复性:在不同图像中能被重复检测到可区分性:不同特征有显著区别高效性:计算复杂度低局部性:对遮挡、光照变化等鲁棒1
- 视觉SLAM十四讲第 2 讲 初识 SLAM
tmiger
计算机视觉人工智能
1.SLAM是什么SLAM是SimultaneousLocalizationandMapping的缩写,中文译作“同时定位与地图构建”。它是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动。如果传感器主要为相机,就称为“视觉SLAM”。SLAM问题的本质:对运动主体自身和周围环境空间不确定性的估计。2.自主运动的两大基本问题1)我在什么地方?-定位
- 视觉SLAM ch5代码总结(二)
雨幕丶
视觉SLAM计算机视觉c++slam
图像去畸变CMakeLists.txtcmake_minimum_required(VERSION3.10)project(basics)#Eigeninclude_directories("/usr/include/eigen3")#opencvfind_package(OpenCVREQUIRED)#添加头文件include_directories(${OpenCV_INCLUDE_DIRS}
- 高翔《视觉SLAM十四讲》第七章视觉里程计3d-2d位姿估计代码详解与理论解析
xMathematics
3d视觉slam机器人无人驾驶无人机人工智能
高翔《视觉SLAM十四讲》第七章代码详解与理论解析一、三维空间位姿估计核心算法实现在视觉SLAM领域,3D-2D位姿估计是确定相机在三维空间中位置和姿态的关键技术。本部分将详细解析其工程实现框架,同时说明代码模块的划分逻辑。代码整体结构清晰,各模块分工明确,主要包含特征匹配、3D点构建、PnP问题求解以及位姿优化等部分。算法流程从读取两幅图像和对应的深度图开始,通过特征匹配模块找出两幅图像中的匹配
- 高翔视觉slam中常见的OpenCV和Eigen的几种数据类型的内存布局及分配方式详解
xMathematics
opencv人工智能计算机视觉内存布局c++slam机器人
vector>内存布局及分配方式详解1.内存对齐的必要性Eigen的固定大小类型(如Eigen::Vector2d、Eigen::Matrix4d等)需要16字节内存对齐,以支持SIMD指令(如SSE/AVX)的并行计算。若未对齐,可能导致程序崩溃或性能下降。2.默认分配器的潜在问题若直接使用std::vector,其默认分配器std::allocator可能无法保证内存对齐。例如:若容器内存起始
- cmake使用教程
四夕小一冰
cmake相关c++
cmake使用教程本教程是参考高翔视觉SLAM十四讲中的讲解。在一个cmake工程中,首先会用cmake命令生成一个makefile文件,然后用make命令根据这个makefile文件的内容编译整个工程。示例:示例基础编译流程先建立一个项目文件夹project1,在文件夹里面建立一个名为helloSLAM.cpp的文件://helloSLAM.cpp#includeusingnamespacest
- 视觉同步定位与地图构建(Visual SLAM)架构详解
YRr YRr
视觉SLAM架构视觉SLAM
视觉同步定位与地图构建(VisualSLAM)架构详解视觉同步定位与地图构建(VisualSimultaneousLocalizationandMapping,简称视觉SLAM)是机器人自主导航、增强现实等领域中的关键技术。视觉SLAM通过利用摄像头获取的视觉信息,同时完成自身定位与环境地图的构建。其架构通常包括前端处理、后端优化及闭环检测等主要模块。以下将对视觉SLAM的架构进行详细阐述。一、整
- 【菜狗学三维重建】Slam对极几何实战—从两张未知相机内参的图片计算出来相机Rt——20250413
小狗照亮每一天
数码相机计算机视觉深度学习笔记opencv人工智能
目录任务1、读取图像2、特征点检测与匹配3、从匹配的对应点中选择八个点4、求解F矩阵(没有内参信息用基础矩阵F来求Rt)之前有一篇关于原理方面的视觉slam三维重建的文章,现在来实战一下,将书本上的知识转化为代码实现一下“视觉里程计-对极几何-2D-2D”。任务从两张未知相机内参的图片计算出来相机R,t。1、读取图像importcv2#读取两张图像a=cv2.imread("00010.jpg")
- OAK相机:纯视觉SLAM在夜晚的应用
OAK中国_官方
人工智能机器学习SLAM
哈喽,OAK的朋友们,大家好啊,今天这个视频主要想分享一下袁博士团队用我们的OAK相机产出的新成果在去年过山车SLAM的演示中,袁博士团队就展示了纯视觉SLAM在完全黑暗的环境中的极高鲁棒性。现在袁博士团队进一步挖掘了纯视觉的潜力,于是又专门录了一段夜间的演示给我们展示了在完全黑暗及光线变化的环境中可靠工作的VIO、回环检测及适用于大场景的内存管理技术。他们现在已将整套VSLAM方案包含在Fact
- 视觉SLAM十四讲 第7讲 (3) 相机运动估计 2D-2D/3D-2D/3D-3D
LYF0816LYF
slamlearning3d计算机视觉算法slam
相机运动估计2D-2D/3D-2D/3D-3D1.2D-2D:对极约束2.三角测量3.3D-2D:PnP3.1直接线性变换DLT3.2P3P3.3最小化投影误差求解PnP4.3D-3D:ICP4.1SVD方法4.2非线性优化方法5.总结若已经有匹配好的点对,要根据点对估计相机的运动,可以分为以下三种情况:2D-2D:即点对都是2D点,比如单目相机匹配到的点对。我们可以用对极几何来估计相机的运动。在
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- 【MotionCap】DROID-SLAM 1 :介绍及安装
等风来不如迎风去
AI入门与实战人工智能SLAHMRDROID-SLAM
DROID-SLAM:DROID-SLAM:DeepVisualSLAMforMonocularDROID-SLAM:适用于单目、立体和RGB-D相机的深度视觉SLAMStereo,andRGB-DCamerashttps://arxiv.org/abs/2108.10869DROID-SLAM:DeepVisualSLAMforMonocular,Stereo,andRGB-DCamerasfi
- 【ORB-SLAM2:三、 地图初始化】
KeyPan
ORB-SLAM2数码相机计算机视觉人工智能机器学习深度学习算法
地图初始化是视觉SLAM系统的关键步骤之一,它是整个系统运行的起点。初始化的主要任务是从输入图像数据中构建一个初始地图,为后续的相机位姿估计和场景重建提供基础。无论是单目、双目还是RGB-D相机,地图初始化的结果直接决定了系统的鲁棒性和精度。3.1为什么需要地图初始化3.1.1地图初始化的重要性定义初始参考坐标系地图初始化为SLAM系统提供了一个全局参考坐标系,使后续的位姿估计和地图扩展能够在一致
- 【视觉SLAM:六、视觉里程计Ⅰ:特征点法】
KeyPan
视觉SLAM计算机视觉人工智能机器学习数码相机算法深度学习
视觉里程计(VisualOdometry,VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。特征点法特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,
- 【视觉惯性SLAM:十五、ORB-SLAM3中的IMU预积分】
KeyPan
视觉惯性SLAM计算机视觉视觉检测
15.1视觉惯性紧耦合15.1.1视觉惯性紧耦合的重要性视觉惯性紧耦合(Visual-InertialTightCoupling)在ORB-SLAM3中的作用不可替代,是实现高鲁棒性和高精度定位的核心技术。单一的视觉SLAM主要依赖于图像特征进行定位和建图,这种方法虽然能够在许多环境中获得良好的效果,但其鲁棒性容易受到动态变化、光照条件恶化以及环境特征稀缺等因素的限制。例如,昏暗场景或快速运动可能
- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- 视觉slam十四讲学习笔记(六)视觉里程计 1
苦瓜汤补钙
视觉SLAM十四讲笔记机器学习ubuntu
本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。目录前言一、特征点法1特征点2ORB特征FAST关键点BRIEF描述子3特征匹配二、实践:特征提取和匹配三、2D-2D:对极几何1对极约束2本质矩阵3单应矩阵四、实践:对极约束求解相机运动五、三角测量总结前言1.理解图像特征点的意义,并掌握在单幅图像中提取出特征点,及多幅图像中匹
- 视觉SLAM十四讲学习笔记——第五讲 相机与图像
晒月光12138
视觉SLAM十四讲学习笔记自动驾驶计算机视觉人工智能
这一讲主要内容就是了解摄像机的成像模型以及OpenCV的使用。1.四种坐标系坐标系基本描述世界坐标系因为摄像机和物体可以随便摆放在空间中的任何位置,所以我们必须用一个固定的坐标系来描述空间中任何物体的位置和摄像机的位置和朝向,这个基准坐标系我们称之为世界坐标系。在计算机视觉中,我们通常把世界坐标系定义为摄像机坐标系或者所观测的物体的中心。摄像机坐标系摄像机坐标系的原点是摄像机的光心,X、Y轴分别平
- 视觉slam十四讲学习笔记(四)相机与图像
苦瓜汤补钙
视觉SLAM十四讲笔记相机机器学习
理解理解针孔相机的模型、内参与径向畸变参数。理解一个空间点是如何投影到相机成像平面的。掌握OpenCV的图像存储与表达方式。学会基本的摄像头标定方法。目录前言一、相机模型1针孔相机模型2畸变单目相机的成像过程3双目相机模型4RGB-D相机模型二、图像计算机中图像的表示三、图像的存取与访问1安装OpenCV2存取与访问总结前言前面介绍了“机器人如何表示自身位姿”的问题,部分地解释了SLAM经典模型中
- ORB-SLAM3运行自制数据集进行定位教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━IMUORB-SLAM3
目前手上有一个特定的任务,做应急救援的视觉SLAM,目前公共数据集比较少,考虑自建数据集,从网络上爬虫火灾、地震的等手机录制的视屏,应用一些现有成熟ORB-SLAM3系统到这个数据集上看效果,然后根据效果得到一些模型改进思路。文章目录一、系统配置二、制作数据集1、脚本编写2、配置文件编写3、录制视频素材4、修改CMakeLists.txt5、编译运行一、系统配置系统版本ubuntu20.04Ope
- 视觉SLAM十四讲学习笔记(二)三维空间刚体
苦瓜汤补钙
视觉SLAM十四讲笔记计算机视觉算法
哔哩哔哩课程连接:视觉SLAM十四讲ch3_哔哩哔哩_bilibili目录一、旋转矩阵1点、向量、坐标系2坐标系间的欧氏变换3变换矩阵与齐次坐标二、实践:Eigen(1)运行报错记录与解决三、旋转向量和欧拉角1旋转向量2欧拉角四、四元数1四元数的定义2四元数的运算3用四元数表示旋转4四元数到旋转矩阵的转换五、实践:Eigen(2)useGeometryvisualizeGeometry总结前言问题
- 视觉slam十四讲学习笔记(三)李群与李代数
苦瓜汤补钙
视觉SLAM十四讲笔记人工智能学习
1.理解李群与李代数的概念,掌握SO(3),SE(3)与对应李代数的表示方式。2.理解BCH近似的意义。3.学会在李代数上的扰动模型。4.使用Sophus对李代数进行运算。目录前言一、李群李代数基础1群2李代数的引出3李代数的定义4李代数so(3)5李代数se(3)二、指数与对数映射1SO(3)上的指数映射2SE(3)上的指数映射三、李代数求导与扰动模型1BCH公式与近似形式2SO(3)李代数上的
- 视觉SLAM十四讲学习笔记(一)初识SLAM
苦瓜汤补钙
计算机视觉人工智能
目录前言一、传感器1传感器分类2相机二、经典视觉SLAM框架1视觉里程计2后端优化3回环检测4建图5SLAM系统三、SLAM问题的数学表述四、Ubuntu20.04配置SLAM十四讲前言SLAM:SimultaneousLocalizationandMapping同时定位与地图构建(建图)。搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环地的模型。同时储计自己的运动。视觉SLA
- 【SLAM14讲编译依赖软件源码版本方面等问题汇总】
终问鼎
自动驾驶-SLAMc++自动驾驶buglinuxubuntu
"逆转鹈鹕”0.视觉SLAM十四讲1.ch3-------Eigen32.ch4-------Sophus2.ch5-------JoinMap3.ch63.1---ceres3.2---g2o4.ch7--视觉里程计5.--ch8associate.py6.--ch9project以下是本人在学习SLAM中遇到的全部问题汇总(主要是依赖和软件方面的)。0.视觉SLAM十四讲1.ch3------
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc