- 论文阅读:2025 arxiv Qwen3 Technical Report
https://arxiv.org/pdf/2505.09388https://www.doubao.com/chat/9918384373236738文章目录论文翻译Qwen3技术报告摘要1引言论文翻译Qwen3技术报告Qwen团队摘要在这项工作中,我们介绍了Qwen模型家族的最新版本Qwen3。Qwen3包含一系列大型语言模型(LLM),旨在提升性能、效率和多语言能力。Qwen3系列包括密集型
- CSPNet: 一种增强CNN学习能力的新型骨干网络
简诚
cnn学习人工智能
论文翻译与总结标题CSPNet:一种增强CNN学习能力的新型骨干网络摘要翻译神经网络在目标检测等计算机视觉任务中取得了显著成果,但其成功高度依赖昂贵的计算资源,限制了在廉价设备上的应用。本文提出跨阶段部分网络(CSPNet),从网络架构角度解决先前工作推理计算量大的问题。该问题源于网络优化中的梯度信息重复。CSPNet通过整合网络阶段起始和结束的特征图,保留梯度的多样性,在ImageNet数据集上
- 论文阅读:2018 arxiv CrowdHuman: A Benchmark for Detecting Human in a Crowd
CSPhD-winston-杨帆
论文阅读
https://www.doubao.com/chat/9226473480559618https://arxiv.org/pdf/1805.00123CrowdHuman:ABenchmarkforDetectingHumaninaCrowd文章目录论文翻译CrowdHuman:用于检测人群中人体的基准摘要1.引言2.相关工作2.1.人体检测数据集2.2.人体检测框架。论文翻译CrowdHuma
- 论文翻译:NeurIPS-2024.Zhehao Zhang.DARG: Dynamic Evaluation of Large Language Models via Adaptive
CSPhD-winston-杨帆
LLMs-动态评估LLMs-数据污染论文翻译语言模型人工智能自然语言处理
DARG:DynamicEvaluationofLargeLanguageModelsviaAdaptiveReasoningGraphhttps://openreview.net/pdf?id=5IFeCNA7zR文章目录DARG:通过自适应推理图动态评估大型语言模型摘要1引言2方法:DARG2.1推理图2.2推理图构建2.3推理图扰动2.4测试用例生成3实验3.1数学推理:GSM8K3.2社会
- DexGarmentLab 论文翻译
AI算法网奇
深度学习宝典人工智能
单个专家演示装扮15任务场景2500+服装手套棒球帽裤子围巾碗帽子上衣外套服装-手部交互捕捉摇篮夹紧平滑任务......投掷悬挂折叠...多样化位置...多样化变形...多样化服装形状类别级一般化类别级(有或没有变形)服装具有相同结构变形生成可推广的可用性点演示操作演示点服装可用性模型可用性①②结构感知扩散策略噪声动作跨越一般化......形状......服装环境配置............机器人
- RT-2论文翻译: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control
YYGe
机器人人工智能深度学习机器人预训练模型
RT-2:Vision-Language-ActionModelsTransferWebKnowledgetoRoboticControlRT-2:用互联网知识训练的视觉语言模型融入到机器人控制中RT1论文翻译:https://blog.csdn.net/weixin_43334869/article/details/135850410文章目录RT-2:Vision-Language-Action
- SpeedFolding 论文翻译
AI算法网奇
深度学习宝典人工智能深度学习
Abstract—折叠衣物可靠且高效一直是机器人操作中的一个长期挑战,因为衣物的复杂动态和高维配置空间。一个直观的方法是首先将衣物操作到一个标准的光滑配置,然后再进行折叠。在这项工作中,我们开发了SpeedFolding,一个可靠且高效的双手系统,该系统根据用户定义的折叠线,将最初皱巴巴的衣物操作到(1)一个光滑的和(2)一个折叠的配置。我们的主要贡献是一个新颖的神经网络架构,能够预测一对夹持器姿
- 【论文翻译】目标检测Fast R-CNN论文翻译
Ziko_AI
目标检测目标检测图像识别FastR-CNN人工智能
FastR-CNN摘要本文提出了一种快速的,基于区域的卷积网络方法(FastR-CNN)用于目标检测.FastR-CNN建立在前人的工作上使用深层卷积网络。来有效分类候选目标。相比于之前的工作,FastR-CNN应用了几个创新点来提高了训练与测试速度,也增加了检测准确度。FastR-CNN在非常深的VGG16网络上比R-CNN快9倍,在测试阶段快213倍,并且在Pascal2012数据集上达到以更
- Capturing forceful interaction with deformable objects using a deep learning- powered... 翻译
Doc2X
经典论文翻译深度学习人工智能机器人
该文档由Doc2X翻译提供解析与翻译,想看更多论文翻译欢迎来Doc2XThisdocumentisprovidedwithparsingandtranslationbyDoc2X.Formoretranslatedpapers,feelfreetovisitDoc2X.原文地址https://www.nature.com/articles/s41467-024-53654-y项目地址:https:
- 论文翻译:Automatic Lesson Plan Generation via Large Language Models with Self-critique Prompting
CSPhD-winston-杨帆
论文翻译智慧教育语言模型人工智能自然语言处理
AutomaticLessonPlanGenerationviaLargeLanguageModelswithSelf-critiquePromptinghttps://link.springer.com/chapter/10.1007/978-3-031-64315-6_13通过自我批评提示的大型语言模型自动生成课程计划摘要在本文中,我们利用大型语言模型(LLMs)的理解和生成能力来自动生成定制
- 论文翻译:ACL-2024.Yiming Huang.Competition-Level Problems are Effective LLM Evaluators
CSPhD-winston-杨帆
论文翻译LLMs-数据污染人工智能
Competition-LevelProblemsareEffectiveLLMEvaluatorshttps://aclanthology.org/2024.findings-acl.803.pdf《竞赛级问题作为有效的LLM评估者》文章目录《竞赛级问题作为有效的LLM评估者》摘要1引言6结论局限性摘要大型语言模型(LLMs)展示了令人印象深刻的推理能力,然而,关于这些能力以及最近潜在的数据污染
- 相机标定论文翻译之“A precision analysis of camera distortion models”
AndyCheng_hgcc
相机标定
Aprecisionanalysisofcameradistortionmodelshttps://hal-enpc.archives-ouvertes.fr/hal-01556898Submittedon5Jul2017Abstract—Thispaperaddressesthequestionofidentifyingtherightcameradirectorinversedistortio
- 论文翻译:OK-Robot: What Really Matters in Integrating Open-Knowledge Models for Robotics
YYGe
机器人深度学习人工智能机器人预训练模型
OK-Robot:WhatReallyMattersinIntegratingOpen-KnowledgeModelsforRoboticsOK-Robot:整合开放知识模型在机器人学中的真正重要性文章目录OK-Robot:WhatReallyMattersinIntegratingOpen-KnowledgeModelsforRoboticsOK-Robot:整合开放知识模型在机器人学中的真正重
- 论文翻译:3D Gaussian Splatting for Real-Time Radiance Field Rendering
好脾气先生
视觉重建论文翻译3d
文章目录1介绍2.1传统场景重建与渲染2.2神经渲染与辐射场2.3基于点的渲染和亮度表示3概览4可微高斯抛雪球5带有自适应密度控制的3D高斯优化5.1优化5.2高斯的自适应控制6高斯的快速可微光栅化器7实现,结果和评估7.1实现7.2结果和评估7.3消融研究7.4局限8讨论和结论最近在做三维重建的相关工作,看了原版论文,做了机翻,自己又润色了一下,应该还算通顺,欢迎各位交流批评;(仅仅是重要部分翻
- 论文翻译:Universal and Transferable Adversarial Attacks on Aligned Language Models
CSPhD-winston-杨帆
LLMs-安全论文翻译语言模型人工智能自然语言处理
UniversalandTransferableAdversarialAttacksonAlignedLanguageModelshttps://arxiv.org/pdf/2307.15043v2通用且可转移的对抗性攻击对齐语言模型文章目录通用且可转移的对抗性攻击对齐语言模型摘要1引言2一个针对LLMs的通用攻击2.1产生肯定回应2.2贪婪坐标==梯度==搜索2.3通用多提示和多模型攻击3实验结
- 论文翻译:Large Language Models for Education: A Survey
CSPhD-winston-杨帆
论文翻译智慧教育语言模型人工智能自然语言处理
目录大型语言模型在教育领域的应用:一项综述摘要1引言2.教育中的LLM特征2.1.LLMs的特征2.2教育的特征2.2.1教育发展过程低进入门槛。2.2.2.对教师的影响2.2.3教育挑战2.3LLMEdu的特征2.3.1"LLMs+教育"的具体体现2.3.2"LLMs+教育"的影响3如何逐步将LLMs整合到教育中3.1教育领域采用LLMs的原因3.2融合策略4LLMEdu的关键技术5LLMEdu
- 论文翻译:ICLR-2023.DYVAL: DYNAMIC EVALUATION OF LARGE LANGUAGE MODELS FOR REASONING TASKS
CSPhD-winston-杨帆
LLMs-数据污染论文翻译语言模型人工智能自然语言处理
DYVAL:DYNAMICEVALUATIONOFLARGELANGUAGEMODELSFORREASONINGTASKShttps://openreview.net/forum?id=gjfOL9z5XrDynamicevaluationtomitigatepotentialtestdatacontamination:weintegratedthedynamicevaluationframewo
- 论文翻译:Large Language Models for Education: A Survey and Outlook
CSPhD-winston-杨帆
论文翻译智慧教育语言模型outlook人工智能
https://arxiv.org/abs/2403.18105目录教育领域的大型语言模型:一项调查和展望摘要1.引言2.教育应用中的LLM2.1概述2.2学习辅助2.2.1问题解决(QS)2.2.2错误纠正(EC)2.2.3困惑助手(CH)2.3教学辅助2.3.1问题生成(QG)2.3.2自动评分(AG)2.3.3教学材料创作(MC)2.4适应性学习2.4.1知识追踪(KT)2.4.2内容个性化
- 『大模型笔记』自用的“科技文章翻译 GPT”和它的 Prompt
AI大模型前沿研究
大模型笔记gptchatgptGPT4
自用的“科技文章翻译GPT”和它的Prompt你是一位精通简体中文的专业翻译,尤其擅长将专业学术论文翻译成浅显易懂的科普文章。请你帮我将以下英文段落翻译成中文,风格与中文科普读物相似。规则:-翻译时要准确传达原文的事实和背景。-即使上意译也要保留原始段落格式,以及保留术语,例如FLAC,JPEG等。保留公司缩写,例如Microsoft,Amazon,OpenAI等。-人名不翻译-同时要保留引用的论
- DeepSeek最新成果-NSA(Native Sparse Attention)
X.Cristiano
NSADeepSeek-R1深度学习
论文地址:NativeSparseAttention:Hardware-AlignedandNativelyTrainableSparseAttention论文翻译:原生稀疏注意力机制(NSA):硬件对齐且可原生训练的稀疏注意力机制-论文阅读论文的背景与动机近年来,我们见证了长文本建模在AI领域的重要性日益凸显。无论是深度推理、代码库生成、还是多轮对话,都离不开模型对长序列信息的有效处理能力。像O
- 论文翻译:EMNLP-2023 CCF-B Multi-step Jailbreaking Privacy Attacks on ChatGPT
CSPhD-winston-杨帆
LLMs-安全论文翻译chatgpt
Multi-stepJailbreakingPrivacyAttacksonChatGPThttps://arxiv.org/pdf/2304.05197多步骤越狱隐私攻击对ChatGPT的影响https://openreview.net/forum?id=ls4Pfsl2jZ文章目录多步骤越狱隐私攻击对ChatGPT的影响摘要1引言2相关工作3对ChatGPT的数据提取攻击3.1数据收集3.2攻
- 论文翻译:EMNLP-2023.CCF-A.Alon Jacovi.Stop Uploading Test Data in Plain Text: Practical Strategies for
CSPhD-winston-杨帆
论文翻译LLMs-数据污染人工智能
StopUploadingTestDatainPlainText:PracticalStrategiesforMitigatingDataContaminationbyEvaluationBenchmarkshttps://arxiv.org/pdf/2305.10160停止上传明文测试数据:实用的策略以减轻评估基准造成的数据污染文章目录停止上传明文测试数据:实用的策略以减轻评估基准造成的数据污染
- 论文翻译:ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?
CSPhD-winston-杨帆
智慧教育论文翻译chatgpt
ChatGPT:Bullshitspewerortheendoftraditionalassessmentsinhighereducation?https://journals.sfu.ca/jalt/index.php/jalt/article/download/689/539/3059文章目录ChatGPT:废话制造者还是传统高等教育评估的终结者?摘要引言ChatGPT的功能ChatGPT对教
- 论文阅读笔记1——DARTS:Differentiable Architecture Search可微分架构搜索(一)(论文翻译学习)
fuhao7i
论文阅读笔记深度学习人工智能机器学习算法计算机视觉
DARTS:DifferentiableArchitectureSearch可微分架构搜索(一)DARTS:DifferentiableArchitectureSearch(一)ABSTRACT摘要1.INTRODUCTION介绍2.可微的结构搜索加油加油!如果你感觉你现在很累,那么恭喜你,你现在正在走上坡路!让我们一起加油!欢迎关注我的讲解视频,让我们一起学习:Bilibili主页:https:
- DeepSeek R1 AI 论文翻译
后端java
摘要原文地址:DeepSeekR1AI论文翻译我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(SFT)作为预处理步骤,展现出了显著的推理能力。通过RL,DeepSeek-R1-Zero自然而然地展现了许多强大且引人注目的推理行为。然而,它也遇到了一些挑战
- DeepSeek R1 AI 论文翻译
老马啸西风
java
摘要原文地址:DeepSeekR1AI论文翻译我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(SFT)作为预处理步骤,展现出了显著的推理能力。通过RL,DeepSeek-R1-Zero自然而然地展现了许多强大且引人注目的推理行为。然而,它也遇到了一些挑战
- DeepSeek R1 AI 论文翻译
后端java
摘要原文地址:DeepSeekR1AI论文翻译我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(SFT)作为预处理步骤,展现出了显著的推理能力。通过RL,DeepSeek-R1-Zero自然而然地展现了许多强大且引人注目的推理行为。然而,它也遇到了一些挑战
- 【论文翻译】DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
行动π技术博客
代码大模型deepseek
本翻译来自大模型翻译,如有不对的地方,敬请谅解引言开源社区通过开发诸如StarCoder(Li等人,2023b;Lozhkov等人,2024)、CodeLlama(Roziere等人,2023)、DeepSeek-Coder(Guo等人,2024)和Codestral(MistralAI,2024)等开源代码模型,在推进代码智能方面取得了显著进展。这些模型的性能已稳步接近闭源同类产品,为代码智能的
- 论文翻译:ChatGPT for good? On opportunities and challenges of large language models for education Author
CSPhD-winston-杨帆
智慧教育论文翻译chatgpt语言模型人工智能
高引用论文:ChatGPTforgood?OnopportunitiesandchallengesoflargelanguagemodelsforeducationAuthorlinksopenoverlaypanelhttps://www.sciencedirect.com/science/article/pii/S1041608023000195ChatGPTforgood?大型语言模型在教育
- 【论文翻译】GOT-OCR论文翻译——General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
机器白学
论文翻译ocr论文阅读论文翻译
论文原文链接:https://arxiv.org/abs/2409.01704特别声明,本文不做任何商业用途,仅作为个人学习相关论文的翻译记录。本文对原文内容直译,一切以论文原文内容为准,对原文作者表示最大的敬意。如有任何侵权请联系我下架相关文章。目录通用OCR理论:通过统一的端到端模型迈向OCR-2.00摘要1引言2相关工作2.1传统OCR2.2基于LVLM的OCR3通用OCR理论3.1框架3.
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息