sklearn.model_selection.GridSearchCV

用于小数据量寻找最优参数,该函数参数很多,详情查看:

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV

该函数返回一个搜寻对象,类似一下的:

GridSearchCV(cv=StratifiedKFold(n_splits=3, random_state=None, shuffle=True),
       error_score='raise',
       estimator=Pipeline(memory=None,
     steps=[('ss', StandardScaler(copy=True, with_mean=True, with_std=True)), ('en', SGDClassifier(alpha=0.0001, average=False, class_weight=None,
       early_stopping=None, epsilon=0.1, eta0=0.0, fit_intercept=True,
       l1_ratio=0.15, learning_rate='optimal', los...state=None, shuffle=True, tol=None,
       validation_fraction=None, verbose=0, warm_start=False))]),
       fit_params=None, iid=True, n_jobs=-1,
       param_grid={'en__alpha': [0.001, 0.01, 0.1], 'en__l1_ratio': [0.001, 0.01, 0.1]},
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring=None, verbose=1)

使用print(model.best_params_)来显示找到的最有参数:

{'en__alpha': 0.001, 'en__l1_ratio': 0.001}

 

你可能感兴趣的:(机器学习)