- # 【GEE基础及工具)(一)】工欲善其事,必先利其器:借助Open Earth Engine实现影像高效处理及批量任务执行
遥感AI实战
GEE基础教程遥感GEE地理信息信息可视化sentinel
在遥感数据分析与处理工作中,海量影像数据的预处理(如去云、裁剪)和分析(如均值计算)是支撑后续研究的核心环节。而Sentinel-2影像作为常用的遥感数据源,常因云层遮挡、数据量大等问题增加处理难度。同时,在使用GoogleEarthEngine(GEE)处理数据时,“批量导出任务需手动逐个启动”的问题也会显著降低效率。本文将从“工具优化”和“数据处理”两个维度展开,详细介绍如何通过GEE完成Se
- Python, Go, Rust 开发全球海岛坐标定位APP
Geeker-2025
pythongolangrust
以下是一个基于**Python、Go和Rust**协同开发的全球海岛坐标定位APP设计方案,结合三者的优势实现高精度地理计算、实时数据处理和跨平台部署:---###系统架构```mermaidgraphTDA[卫星遥感数据源]-->B(Python数据处理)B-->C{Rust地理引擎}C-->D[Go微服务集群]D-->E[移动端/Web端]E-->F[用户终端]```---###模块分工及技术
- AI+Python赋能!长时序植被遥感动态分析全攻略:从物候提取到生态评估
梦想的初衷~
土壤植被遥感人工智能遥感植被土壤
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用
科研的力量
人工智能ChatGPTchatgpt人工智能
课程将最新的人工智能技术与实际的遥感应用相结合,提供不仅是理论上的,而且是适用和可靠的工具和方法。无论你是经验丰富的研究人员还是好奇的从业者,本课程都将为分析和解释遥感数据开辟新的、有效的方法,使你的工作更具影响力和前沿性。遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面
- 遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
科研的力量
生态遥感双碳chatgptGEE卫星遥感数据
以EarthEngine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,G
- Sentinel-5P遥感数据下载及预处理教程【20250105】
八秒记忆的老男孩
遥感数据预处理遥感反演Sentinel-5P预处理遥感数据
Sentinel-5P是欧空局(EuropeSpaceAgency,ESA)于2017年10月13日发射的一颗全球大气污染监测卫星。卫星搭载了对流层观测仪(TroposphericMonitoringInstrument,TROPOMI),可以有效的观测全球各地大气中痕量气体组分,包括NO2、O3、SO2、HCHO、CH4和CO等重要的与人类活动密切相关的指标,加强了对气溶胶和云的观测。⛄Sent
- 【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?
985小水博一枚呀
深度学习学习笔记深度学习学习笔记人工智能
【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?文章目录【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?前言✅一、提高模型性能✅二、降低训练成本✅三、迁移学习能力强✅四、模型结构验证过,可靠性高✅五、促进多模态和复杂任务发展总结如何将自己的遥感数据(输入波段为17)用作DenseNet121
- EasyFeature:智能要素提取的遥感技术创新
智绘空天
人工智能深度学习机器学习图像处理
引言传统遥感解译受制于海量数据与地物复杂性,精度与效率常陷入瓶颈。EasyFeature软件正是应对这一领域痛点的先锋解决方案,其核心“要素智能提取”特性,聚焦于云覆盖、道路、居民地/建筑物、林地、水系等关键专题信息的深度挖掘,彻底改变了工程化影像处理流程。该软件依托强大的核心技术壁垒与智能算法,不仅有效提升了信息提取精度,更将遥感解译的效率提升至全新高度,为遥感数据分析领域注入自动化能量。核心技
- GIS基础应用技术从0开始
前端小白从0开始
html5vue.js前端GISOpenLayers
一、GIS数据构成1、地图数据:包括地形图,交通图,水系图等基础地理信息,如高德路网图,中国地形图等。图1-高德卫星图+路网2、遥感数据:通过卫星,无人机等遥感设备获取的影响数据。如天地图和地块管理系统中展示的高清地图图2-卫星遥感影像与无人机影像3、属性数据:描述地理实体特征的文字和数字信息。例如一个地块的类型和面积。图3-地理元素与其属性表4、元数据:描述地理数据的内容、质量、来源等信息的数据
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- DeepSeek 赋能卫星遥感:AI 驱动数据分析新范式
奔跑吧邓邓子
DeepSeek实战DeepSeek卫星遥感数据分析人工智能应用
目录一、引言二、DeepSeek技术解析2.1DeepSeek简介2.2核心能力与优势三、卫星遥感数据分析概述3.1数据获取与特点3.2传统分析方法及挑战四、DeepSeek在卫星遥感数据分析中的应用场景4.1土地利用与覆盖监测4.2自然资源调查4.3灾害监测与预警4.4生态环境评估五、应用案例剖析5.1具体项目背景介绍5.2DeepSeek应用过程与成果展示5.3与传统方法对比优势六、面临的挑战
- 【智慧农业 × 国产大模型】智能病虫害识别与作物产量预测工程实践全流程解析
观熵
国产大模型部署实战全流程指南大数据人工智能国产大模型
【智慧农业×国产大模型】智能病虫害识别与作物产量预测工程实践全流程解析关键词国产大模型、农业AI、病虫害识别、作物产量预测、图像分类、多模态融合、时序建模、遥感数据、边缘计算、农业大数据、模型轻量化、精细化种植摘要随着农业智能化进程加速,传统依赖人力经验的病虫害识别与作物产量评估方式,已无法满足大规模、精细化生产需求。本文基于国产大模型的实际应用案例,深入解析如何构建面向田间场景的“病虫害识别+产
- 珈和科技荣登《湖北日报》头版,碧空“慧眼”让业者心中有“数”
珈和info
科技
2016年以来每年的4月24日设定为“中国航天日”,今年我们一起在家门口(今年的主场活动将在湖北武汉举办)以“极目楚天,共襄星汉”为主题迎来了第九个“中国航天日”。回望珈和科技创业十年路,始终与国家航天事业保持步调一致、快速前进,并连续6年荣获“中国商业航天30强”称号。作为2023年度“中国商业航天30强”中湖北省唯二上榜的企业,珈和科技在商业航天领域离下游产业链最近的一环——卫星遥感数据服务场
- GEE案例:基于Google Earth Engine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区)
此星光明
GEE案例分析人工智能大数据rusle土壤侵蚀模型算法gee
基于GoogleEarthEngine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区案例研究|2024-2025年度数据)1.研究背景与数据准备本研究利用修正通用土壤流失方程(RUSLE)评估恒河支流缓冲区的土壤侵蚀状况。核心数据集包括:气象数据:CHIRPS日降水数据集(计算R因子)地形数据:SRTM数字高程模型(提取LS因子)遥感数据:哨兵2号(计算C因子)、MODIS土地覆盖(提取P因子)土
- 轻松发TGRS!遥感结合小目标检测 模型达到94.2%mAP
Ai多利
目标检测人工智能计算机视觉遥感
2025深度学习发论文&模型涨点之——遥感+小目标检测遥感在军事侦察、资源勘探、环境监测等领域的应用日益广泛。然而,如何从海量的遥感数据中准确、高效地检测出小目标,已成为当前遥感图像处理领域的关键挑战之一。小目标在遥感图像中往往具有尺寸微小、背景复杂、对比度低等特点,这使得传统的检测方法难以满足实际应用的需求。近年来,随着深度学习技术的兴起,基于卷积神经网络(CNN)的检测算法为遥感小目标检测带来
- 【卫星遥感影像】国产遥感影像分类技术应用研究进展综述_论文推荐
兰小静
卫星遥感论文推荐国产遥感影像分类应用研究进展
影像分类是遥感影像信息提取中的基本问题之一和遥感影像应用的关键,为我国掌握本土信息资源自主权、满足国家的紧迫需求具有重大战略意义。本文将进行这篇遥感影像分类的论文推荐。1.论文引用[1]胡杰,张莹,谢仕义.国产遥感影像分类技术应用研究进展综述[J].计算机工程与应用,2021,57(03):1-13.2.国产遥感数据概述环境系列遥感卫星:是我国专门用于环境和灾害监测的对地观测卫星系统,主要由2颗光
- 最新AI赋能Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估
jwwkyjspt
地学植物遥感人工智能遥感植物农业
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 中国地区土地覆盖综合数据集
做科研的周师兄
数据集分享大数据
LandcoverproductsofChina时间分辨率年共享方式开放获取数据大小434.73MB数据时间范围元数据更新时间2020-07-17数据集摘要中国土地覆盖数据集包括5种产品:1)glc2000_lucc_1km_China.asc,由GLC2000项目开发的基于SPOT4遥感数据的全球土地覆盖数据中国子集,数据名称为GLC2000.GLC2000中国区域土地覆盖数据由全球覆盖数据直接
- 遥感大数据处理基础与AI大模型交互
小艳加油
人工智能GEEchatgpt遥感
公众号,【科研的力量】随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤
- AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
xiao5kou4chang6kai4
生态遥感深度学习人工智能python机器学习遥感反演植被参数生态环境
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- 【大模型ChatGPT +DeepSeeK+python】最新AI赋能Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估
赵钰老师
遥感DeepSeekpython人工智能chatgpt数据分析pythonarcgis
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 第36讲:作物生长预测中的时间序列建模(LSTM等)
Chh0715
lstm人工智能rnnr语言python
目录为什么用时间序列模型来预测作物生长?⛓️什么是LSTM?示例案例:预测小麦NDVI变化趋势1️⃣模拟数据构建(或使用真实遥感数据)2️⃣构建LSTM所需数据格式3️⃣构建并训练LSTM模型4️⃣模型预测与效果可视化除了LSTM,还有哪些方法?农学中的潜在应用场景✅小结在精准农业快速发展的今天,如何准确预测作物的生长状态,已成为提升农业决策效率的重要课题。特别是面对多变的气候、不同地块的管理方式
- 遥感大模型
大奎帝国
笔记
遥感大模型简介单一模态简介随着高光谱遥感技术的迅猛发展,光谱成像数据呈爆炸式增长,现有的分析方法和解译手段已不能满足全要素精细地物感知的需求,人工智能大模型的出现,为解决高光谱遥感数据信息充分提取与挖掘、实现“吃干榨净”提供了技术保障。斯坦福大学的研究定义基础模型(FM)为:指在广泛数据上训练的模型(通常使用大规模的自监督方法),可以用于广泛的下游任务(通过微调等方法)。GPT-4等是目前比较流行
- 第十九讲 XGBoost 二分类模型案例(遥感数据识别玉米与小麦地块)
Chh0715
数据挖掘人工智能r语言机器学习算法分类
案例场景:遥感数据识别玉米与小麦地块你是一名农业遥感研究者,希望根据遥感指数(如NDVI、EVI、土壤亮度等)对农田进行分类,判断地块是玉米还是小麦。步骤1:模拟数据生成我们使用dplyr和MASS生成500个样本数据,包含4个遥感特征变量与1个类别标签(玉米=1,小麦=0)。#加载所需包library(dplyr)library(ggplot2)library(xgboost)library(c
- 根据ndvi提取非水体_无人机多光谱遥感系统在河道水体富养化监测中的应用
小小黑飞飞
根据ndvi提取非水体
摘要:伴随着无人机平台的不断进步,遥感传感器日益丰富,可见光及近红外波段的高分辨率影像逐步普及,推动无人机低空遥感由侧重几何定位的测绘应用向以决策支持为目的的专题信息提取方向转变。运用分析遥感数据的数学和物理方法,开展定量遥感方面的研究,进一步将基础影像数据转化为高级专题产品,正在成为一种新的趋势。本文介绍一种面向水体污染物监测的无人机多光谱应用方法。水体富营养化防治是水污染治理中最为复杂和困难的
- CNN+Transformer实现遥感影像建筑物分割
hanfeng5268
深度学习cnntransformer人工智能
文章目录一、局部细节与全局上下文的协同建模1.CNN的局部感知优势空间局部性:平移等变性:层次化特征提取:2.Transformer的全局关联优势长距离依赖建模:动态权重分配:尺度不变性:二、多尺度特征融合能力1.CNN的多级特征金字塔2.Transformer的多头注意力机制三、对遥感数据特性的适配优化1.高分辨率影像处理局部计算优化:滑动窗口策略:2.复杂场景鲁棒性光照变化:类内差异:小目标检
- 当气象水文遇见R语言——破解时空数据的“达芬奇密码“
Yolo566Q
r语言开发语言
在气象水文科学领域,数据从来不只是简单的数字阵列。台风路径的时空跳跃、流域径流的非线性涨落、气候要素的混沌演变,这些充满不确定性的自然现象转化为数据时,呈现出多维时空交织的复杂图景。研究人员常常要在TB级遥感数据中捕捉毫米级降水变化,从百年尺度的气候序列里识别突变拐点,在非结构化的观测数据中重构三维大气场——这些看似不可能完成的任务,正是现代气象水文研究的日常挑战。传统的数据处理工具在这场博弈中频
- CASA模型-估算陆地生态系统植被净初级生产力NPP的经典模型(相关遥感数据、MODIS NDVI遥感产品预处理、气象数据预处理与空间插值、区域制图)
KY_chenzhao
人工智能大数据机器学习matlab
CASA模型(Carnegie-Ames-StanfordApproach)是一个基于光合作用和呼吸作用过程的生态系统生产力模型。在实际应用中,气象数据是CASA模型的关键输入之一,用于模拟植被的光合作用和呼吸作用。本文将介绍如何结合气象数据实现CASA模型,并提供一个实际案例CASA模型需要的气象数据主要包括:辐射(光合有效辐射PAR)温度(影响酶活性和呼吸作用)降水(影响土壤水分和植被生长)这
- 【读论文】多/高光谱图像和 LiDAR 数据联合分类方法研究(2020)
氧艺
读论文分类机器学习
【读论文】多/高光谱图像和LiDAR数据联合分类方法研究(2020)王青旺DOI文章目录摘要:关键词:结论:1.该论文研究了什么?2.创新点在哪?3.研究方法是什么?4.得到的结论是什么?摘要:地物分类识别需求的不断升级,对遥感场景解译提出了新要求:更高的空间二维解译精度和遥感场景空间三维解译。利用多源遥感数据和新型遥感技术是满足不断升级的需求的有效手段。多/高光谱成像和单波段激光雷(LightD
- Xarray的维度魔法
Python与遥感
python
前言遥感数据通常是多维的,涉及到时空四维数据(经度、纬度、时间、波段)。在这种复杂的数据结构下,如何高效、清晰地进行分析成为一个难题。今天,我们将介绍xarray库,它是处理这类多维数据的强大工具。xarray不仅能让你的代码更加简洁直观,还能使复杂的数据操作变得优雅。接下来,我们将一起探讨如何使用xarray应对遥感数据分析中的各种挑战。一、为什么选择Xarray?传统numpy数组的痛点:维度
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR