- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- yolo 目标检测600类目标
大霸王龙
行业+领域+业务场景=定制YOLO目标检测人工智能
1.模型架构调整类别适配:将YOLO输出层的类别节点数调整为600(如YOLOv5的detect.yaml中修改nc=600),并更新类别名称映射表(classes.txt)。骨干网络优化:若使用YOLOv5/v8,可升级骨干网络(如C3模块深度)或替换为更高性能的主干(如EfficientNet、ResNet-101),以增强复杂场景的特征提取能力。多尺度检测头:保留或扩展YOLO的多尺度输出(
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- yolo检测常见指标
bigdata从入门到放弃
深度学习yoloYOLO目标跟踪人工智能深度学习
YOLO(YouOnlyLookOnce)作为经典的单阶段目标检测算法,其性能评估依赖于目标检测领域的通用指标。这些指标既衡量检测精度(是否准确识别物体类别、准确定位),也衡量检测速度(是否实时)。下面用通俗的语言详细解释核心指标:一、基础:判断“预测框是否有效”——IoU(交并比)目标检测的核心是“预测框”(模型输出的矩形框)是否准确覆盖“真实框”(人工标注的物体位置)。IoU是衡量两者重叠程度
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- PyTorch武侠演义 第一卷:初入江湖 第7章:矿洞中的计算禁制
空中湖
pytorch武侠演绎pytorch人工智能python
第一卷:初入江湖第7章:矿洞中的计算禁制矿洞深处罗盘残件在接近矿洞时突然发热,指针疯狂旋转。"就是这里,"欧阳长老抚摸着洞壁上的计算图刻痕,“TensorFlow帮用静态图封印了矿脉。”林小码看到:幽蓝矿脉构成巨大的计算图结构水晶矿簇随呼吸节奏明灭(CUDA核心)矿道中流淌着数据光流(内存带宽)"小心!"大师突然拉回林小码。他刚才踩中的矿砖下陷,触发岩壁上的机关——数十道计算图锁链从四面八方射来!
- 《目标法则》:如何找到你的明确首要目标?
女朱姝涵
我们每个人都想找到自己最终要确定的目标,但是很多人终其一生都在寻找中,都没有找到自己最需要的目标。在一本书中,结合成功学之父拿破仑•希尔里面的理念,可以助力你找到自己最终的目标。该书就是《目标法则—大师的积极思维课》。作者是米奇•霍洛维茨,作家,企鹅出版社编辑,著有《隐秘美国》《神奇俱乐部》等获奖图书。是很多时报的专栏作家,更是CNN,哥伦比亚广播等有声书讲师,一生在研究拿破仑•希尔的思想。什么是
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- YOLOv4详细介绍
不是二哈的柯基
YOLO系列深度学习pdfYOLO计算机视觉
YOLOv4是一种目标检测算法,是YOLO(YouOnlyLookOnce)系列的最新版本,由AlexeyBochkovskiy、Chien-YaoWang和Hong-YuanMarkLiao共同提出。相比于之前的版本,YOLOv4在速度和精度方面都有了显著的提升。下面是YOLOv4的一些详细介绍:模型结构YOLOv4采用了一种新的模型结构,称为CSPDarknet。这个结构类似于ResNet的残
- YOLOv4 介绍及其模型优化方法
1、YOLOv4介绍2020年4月,YOLOv4在悄无声息中重磅发布,在目标检测领域引起广泛的讨论。在YOLO系列的原作者JosephRedmon宣布退出CV领域后,表明官方不再更新YOLOv3。但在过去的两年中,AlexeyAB继承了YOLO系列的思想和理念,在YOLOv3的基础上不断进行改进和开发,于今年4月发布YOLOv4,并得到了原作者JosephRedmon的承认。YOLOv4可以使用传
- 【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO目标跟踪人工智能目标检测计算机视觉论文阅读
YOLOv4详解:模型结构、损失函数、训练方法及代码实现motivationYOLO系列作者JosephRedmon与AlexeyBochkovskiy致力于解决目标检测领域的核心矛盾:精度与速度的平衡。YOLOv4的诞生源于两大需求:工业落地:在移动端/边缘设备实现实时检测(>30FPS)学术突破:无需昂贵算力(如1080Ti即可训练),在MSCOCO数据集达到SOTAmethods1.数据加载
- 基于深度学习的图像分类:使用ShuffleNet实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘python目标检测
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。ShuffleNet是一种轻量级的深度学习架构,专为移动和嵌入式设备设计,能够在保持较高分类精度的同时,显著减少计算量和模型大小。本文将详细介绍如何使用ShuffleNet实现高效的图像分类,从理论基础到代码实现,带你一步步掌
- OpenCV基础02_图像预处理
白槿_cha
计算机视觉基础opencv人工智能计算机视觉笔记
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学一、图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂
- 破解电梯场景难题:陌讯识别算法 mAP 达 98.7%
2501_92474790
算法计算机视觉目标检测智慧城市目标跟踪
开篇痛点:电梯间电动车识别的行业困局传统视觉算法在电梯间电动车检测场景中始终面临三重挑战:复杂光线环境下(如强光直射、夜间低照度)目标特征提取不稳定,电动车与婴儿车、行李箱等相似物体的误判率高达35%;电梯轿厢狭小空间导致目标畸变严重,小目标检测漏检率超过20%;普通模型在边缘设备部署时难以兼顾精度与速度,FPS普遍低于15帧[实测数据显示]。这些问题直接导致物业安防系统告警泛滥,真正的安全隐患却
- 夜间监控模糊不清?陌讯低光目标检测方案解读
2501_92474779
目标跟踪人工智能计算机视觉算法目标检测
开篇痛点:安防监控的检测困局在智慧城市建设浪潮下,安防监控面临核心矛盾:复杂场景中传统算法的泛化性短板日益凸显。某市级公安部门数据显示,夜间监控的误报率高达34%,雨雾天气下漏检率超40%。更严峻的是,密集人流场景中YOLOv5的ID丢失率达28%,实时预警几乎瘫痪——这恰是陌讯视觉算法v3.2的破局切入点。技术解析:三阶时空融合架构传统单帧检测在遮挡场景易失效,陌讯的创新在于时空联合建模:#陌讯
- 实时检测延迟超200ms?陌讯新框架FPS提速50%揭晓
2501_92474779
目标跟踪人工智能计算机视觉机器学习算法视觉检测
开篇痛点在现代安防监控场景中,实时目标检测(Real-timeObjectDetection)至关重要,但传统算法如FasterR-CNN或YOLOv5往往面临严峻挑战。实测数据显示:复杂环境下(如夜间低光照、人群密集区),漏检率(MissRate)高达15-20%,导致安全隐患;同时,检测延迟(Latency)常超过200ms,影响应急响应。例如,某城市交通监控系统报告,在雨雾天气中的车辆误报率
- 智慧零售 AI 卡顿?陌讯轻量化方案 FPS 升 40%
2501_92722744
零售人工智能目标跟踪计算机视觉目标检测算法
一、开篇痛点:智慧零售视觉算法的三大行业困境在智慧零售场景中,传统视觉算法正面临着难以突破的技术瓶颈。自助结算台的商品误识别率常高达12%-18%,导致消费者频繁触发人工核验;复杂货架场景下,商品重叠、光照变化和包装相似性问题,使得目标检测漏检率超过20%;而边缘设备的算力限制,又让实时推理帧率(FPS)普遍低于25,无法满足流畅交互需求[1]。这些问题直接造成商超运营成本增加30%以上,严重制约
- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- 数字人克隆中SyncTalk算法介绍与部署过程
优秘智能UMI
人工智能ubuntu
SyncTalk算法介绍SyncTalk合成同步的头部说话视频,采用三平面哈希表示来保持主体身份。它可以生成同步的嘴唇动作、面部表情和稳定的头部姿势,并恢复头发细节以创建高分辨率视频。部署在Linux中部署该项目,在Ubuntu18.04、Pytorch1.12.1和CUDA11.3上测试。gitclonehttps://github.com/ZiqiaoPeng/SyncTalk.gitcdSy
- 风格迁移(Style Transfer)
1.什么是风格迁移(StyleTransfer):简单介绍风格迁移的概念,指的是将一张图像的内容与另一张图像的艺术风格结合起来,从而生成一个新的图像。例如,将一张风景图像的内容与一幅著名艺术作品(如梵高的《星夜》)的风格结合。应用场景:风格迁移常用于图像生成、艺术创作和增强现实等领域。目标:本文将讲解如何使用PyTorch和VGG19模型实现风格迁移,并展示其核心代码。2.风格迁移的原理在这一部分
- [毕业设计]一些基于yolov5项目高分毕业项目源码下载地址汇总
海神之光.
毕设课程设计YOLO
项目名称下载地址车辆检测计数+车牌定位+车牌识别的yolov4模板检测与yolov5车牌检测与LPRNet车牌检测源码+模型+详细说明.zip点我下载基于改进后的YOLOv5目标检测模型实现人群密度检测系统源码+模型+详细说明.zip点我下载基于YOLOv5实现微藻智能化在线检测系统源码+图片+说明文档.zip点我下载YOLOv5deepsort算法船舶等交通工具监测计数UI界面源码.zip点我下
- 基于YOLOv5+pyQT6的目标检测系统通用项目模板
本项目开发基于YOLOv5+pyQT6的目标检测项目,用来集成YOLO的目标检测系统,作为该类系统的开发模板,旨在通过替换模型文件即可进行照片、视频、摄像视频流的检测,设置日志系统,记录系统的每一步操作,并集成其他功能作为该模板的辅助功能。具体效果如下:yolo目标检测系统模板1.概述智能目标检测系统V2.1是一款基于PyQt6和YOLOv5模型开发的桌面应用程序。它提供了一个现代化、直观且功能丰
- 标签助手:基于LabelImg和YOLOv5的图像半自动标注工具
伏容一Julia
标签助手:基于LabelImg和YOLOv5的图像半自动标注工具项目基础介绍标签助手(labelGo-Yolov5AutoLabelImg)是一个图形化的半自动图像注解工具,它结合了广受欢迎的图像标注工具LabelImg的力量与先进的目标检测框架YOLOv5。这个开源项目旨在简化数据集的标注过程,利用现有YOLOv5PyTorch模型实现快速的半自动化标注,极大地提高了标注效率。项目主要采用Pyt
- MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码神经网络matlabcnn支持向量机人工智能大数据深度学习
目录MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例...2项目背景介绍...2项目目标与意义...31.提高多变量时序预测的准确性...32.弥补传统方法的局限性...33.提高模型训练效率...3
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include