- Dijkstra算法求最短路径问题
Dijkstra算法求最短路径问题——HM图论中最常见的问题就应是最短路径问题了,解决这一问题的几个基本算法有三个:Floyed、Dijkstra和SPFA了。现在我来浅谈一下Dijkstra的思想与实现。单纯的Dijkstra并不是很快,算一个点到其余各点的时间复杂度是O(n^2)级别,算每个点到其余各点的复杂度就是O(n^3)了,在提高组竞赛中不占优势,但其进行优化后便很强大了,如用堆优化Di
- 图论篇--代码随想录算法训练营第五十九天打卡|Bellman_ford 算法精讲,SPFA算法,Bellman ford之判断负权回路,Bellman ford之单源有限最短路
無量空所
leetcode算法图论c++
本系列算法用来解决有负权边的情况Bellman_ford算法精讲题目链接:94.城市间货物运输I题目描述:某国为促进城市间经济交流,决定对货物运输提供补贴。共有n个编号为1到n的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本-政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用
- 最小费用最大流算法
Da_秀
CCFCSP题库训练CSP信奥赛知识点讲解算法开发语言数据结构动态规划图论c++
最小费用最大流算法原理问题:网络中有源点(起点)和汇点(终点),每条边有流量上限和单位流量费用。求:从源点到汇点的最大流量在流量最大的前提下,总费用最小核心思想:在找增广路时,选择单位费用之和最小的路径(使用SPFA找最短路)实现步骤建图:使用链式前向星存储(含反向边)正向边:容量cap,费用cost反向边:容量0,费用-cost算法流程:Step1:用SPFA找费用最短路(记录路径和最小流量)S
- Dijkstra算法进阶:如何处理负权边问题?
数据结构与算法学习
算法网络服务器ai
Dijkstra算法进阶:如何处理负权边问题?关键词:Dijkstra算法、负权边、最短路径、Bellman-Ford算法、SPFA算法摘要:Dijkstra算法是求解单源最短路径的经典算法,但它有一个“致命短板”——无法处理包含负权边的图。本文将从Dijkstra算法的底层逻辑出发,用“快递员送外卖”的生活案例解释负权边为何会让Dijkstra失效;接着拆解Bellman-Ford、SPFA等能
- 网工实验——OSPF配置
鸡哥爱技术
智能路由器网络
网络拓扑图配置1.为每个路由器配置接口(略)(详细见RIP实验)2.配置OSPFAR1[AR1]ospf[AR1-ospf-1]area1[AR1-ospf-1-area-0.0.0.1]network172.16.1.10.0.0.0#精确配置网络,也可以像下面那条命令那样配置[AR1-ospf-1-area-0.0.0.1]network192.168.1.00.0.0.255AR2[AR2]
- OSPF的拓展配置
古德赖可可
HCIP知识小记网络
OSPF的拓展配置1.OSPF的手工认证1.接口认证intg0/0/0ospfauthentication-modemd51cipher123456//123456:你自己配置的密码cipher:密文展示plain:明文显示2.区域认证----针对区域内的所有接口做接口认证[r2-ospf-1-area-0.0.0.0]authentication-modemd51cipher1234563.虚链
- Bellman-ford算法
可可亚
图论算法图论bellman–fordalgorithm
Bellman-ford算法解决的问题思路模版特定问题解决的问题最短路问题,时间复杂度为O(n∗m)O(n*m)O(n∗m),可以有负权边,一般情况下都是SPFA算法更加优越,一般只有一种情况下必须使用Bellman-ford算法,那就是限制到最小距离的边数k,其他情况下一般SPFA算法更加适用。思路对每条边都进行松弛操作n-1次,一点能实现最短路。松弛:例如一条边a->b,权值为w,那么dist
- Bellman-Ford算法,Bellman-Ford队列优化(SPFA)
hide_on-BUSh
算法数据结构
Bellman-Ford算法能解决负权的问题但不能解决负权回路的问题但是Bellman-Ford可以判断是否可以存在负环,同样的SPFA也可以判断负环的存在。Bellman-Ford主要是将每个点每一次都松弛while(b){b=false;for(inti=1;iq;intspfa(ints,intt){memset(vis,0,sizeof(vis));memset(dis,0x3f,size
- 算法笔记.spfa算法(bellman-ford算法的改进)
xin007hoyo
算法笔记数据结构
题目:(来源于AcWing)给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出格式输出一个整数,表示1号点到n号点的最短距离。如果路径不存在,则输出i
- 信息学奥赛一本通 1504:【例 1】Word Rings | 洛谷 SP2885 WORDRING - Word Rings
君义_noip
信息学奥赛一本通题解洛谷题解信息学奥赛C++图论算法
【题目链接】ybt1504:【例1】WordRings洛谷SP2885WORDRING-WordRings【题目考点】1.图论:SPFA_DFS判断负环SPFA_DFS算法Bellman-Ford算法栈优化,也称SPFA_DFS算法。主要用于寻找图中是否存在负环或正环。以判断负环为例:将dis数组每个元素初值设为0尝试从每个顶点出发调用SPFA_DFS算法。如果访问到还在搜索过程中(在栈内)的顶点
- 【图论】bellman-ford 算法 + spfa 算法(基于队列优化)单源最短路(code c++)
idiot5liev
图论算法图论bellman–fordalgorithmc++spfa链式前向星
目录&索引一、前言题目二、算法原理bellman-ford、spfa算法关系spfa算法通俗介绍三、程序代码朴素bellman-fordcodec++spfacodec++四、结论一、前言图为点和边的集合边方向->有向无向边边权值->是否有负权边以及边是否成环,对点来说的出入度存图方式邻接矩阵邻接表链式前向星最短路径算法floyd——多源,时间复杂度O(n^3)dijkstra——单源,推荐因为快
- 算法系列——四种最短路算法:Floyd,Dijkstra,Bellman-Ford,SPFA
ITString
经验之谈java算法数据结构
写在前面:好久没有更新博客了,距离上一次更新已经过去了十一个月了,一是因为课业繁重,二是因为这一年中接了不少项目。其实早就想写写算法和数据结构相关的文章了,之前在Coders群里也说过17年要多写写算法和数据结构,奈何计划赶不上变化,实在是没有工夫写。现在到了18年了,最近刚放寒假,数据科学导论实验今天交上了最后一个,总算是有些闲工夫了,准备写些东西却又不知道应该写什么,算法那么多,从哪个写起呢?
- NO.95十六届蓝桥杯备战|图论基础-单源最短路|负环|BF判断负环|SPFA判断负环|邮递员送信|采购特价产品|拉近距离|最短路计数(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯图论c++
P3385【模板】负环-洛谷如果图中存在负环,那么有可能不存在最短路。BF算法判断负环执⾏n轮松弛操作,如果第n轮还存在松弛操作,那么就有负环。#includeusingnamespacestd;constintN=2e3+10,M=3e3+10;intn,m;intpos;structnode{intu,v,w;}e[M*2];intdist[N];boolbf(){//初始化memset(di
- 图论学习笔记(4):Bellman-ford算法和SPFA算法
sml259(劳改版)
算法数据库SPFABellman-ford
声明:这里简单聊聊我们Bellman-ford算法的思路,我也查了一些资料来进行辅助了解,我们主要掌握SPFA算法的思现,因为我们Bellman-ford算法的时间复杂度是稳定的O(VE)(其中V是顶点个数,E是边的个数),在大多数算法题目里这个时间复杂度已经很大了(打XCPC应该O(n^2)左右几乎都会卡)。而我们的SPFA算法平均情况下的时间复杂度是O(kE)(k是一个小于2的数),所以在大多
- 数学建模--图论与最短路径
不到w粉不改名
数学建模图论最短路径DijkstraFloyd算法Bellman-FordSPFA
目录图论与最短路径问题最短路径问题定义常用的最短路径算法Dijkstra算法Floyd算法Bellman-Ford算法SPFA算法应用实例结论延伸如何在实际应用中优化Dijkstra算法以提高效率?数据结构优化:边的优化:并行计算:稀疏矩阵和向量运算:代码优化:Floyd算法在处理多源最短路径问题时的具体实现步骤是什么?Bellman-Ford算法如何检测并处理负权边的图中的负环?SPFA算法与B
- (代码随想录)BEllman_ford算法 及其优化 SPFA
cq.gi
算法
代码随想录(知识提炼)Bellman_ford算法用处解决带负权值的单源最短路问题核心思想对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。何为松弛minDist[B]表示到达B节点最小权值,minDist[B]有哪些状态可以推出来?状态一:minDist[A]+value可以推出minDist[B]状态二:minDist[B]本身就有权值(可能是其他边链接的节点B例如节点C,以至
- 最短路径--SPFA算法
OYangxf
数据结构与算法算法图论数据结构
SPFA算法的引入实际上,SPFA算法其实是对Bellman-Ford算法的优化,它通过队列这种数据结构,使得在松弛操作时不会去遍历无关的边。SPFA算法的代码实现#include#include#includeusingnamespacestd;typedefpairPII;intn,m,cnt;intdis[105];intvis[105];ints;inthead[105];intuse[1
- 探索域名安全新境界:checkdmarc深度解析与应用推荐
幸竹任
探索域名安全新境界:checkdmarc深度解析与应用推荐checkdmarcAparserforSPFandDMARCDNSrecords项目地址:https://gitcode.com/gh_mirrors/ch/checkdmarc在数字化时代,电子邮件的安全性成为了企业及个人网络防护的重要一环。SPF(SenderPolicyFramework)、DMARC(Domain-basedMes
- 常见算法模板(python)
雨拾
python算法深度优先
常见算法模板(python)二分搜索(实数搜索、整数搜索)前缀和、差分数组深度优先搜索DFS宽度优先搜索BFS并查集树状数组线段树稀疏表动态规划(矩阵)快速幂字符串匹配算法-KMPFloyd算法Dijkstra算法Bellman-Ford算法SPFA算法Prim算法Kruskal算法二分搜索(实数搜索、整数搜索)#-*-coding:utf-8-*-#@Author:BYW-yuwei#@Soft
- 代码随想录第六十天| Bellman_ford 队列优化算法(又名SPFA) bellman_ford之判断负权回路 bellman_ford之单源有限最短路
kill bert
代码随想录算法训练营算法
Bellman-Ford队列优化算法(SPFA)精讲题目描述某国共有n个城市,通过m条单向道路连接。每条道路的权值为运输成本减去政府补贴。要求找出从城市1到城市n的最低运输成本路径,若成本为负则表示盈利,若无路径则输出“unconnected”。输入包含n和m,接着m行每行三个整数s、t、v,表示从s到t的道路权值为v。输出为最低成本或“unconnected”。输入输出示例输入:6756-212
- 图论--最短路算法
Dream_Maker_yangkai
c++图论算法知识点总结和梳理图论
图论–最短路算法–yangkai在解决最短路问题时,优秀的最短路算法是必不可少的工具在这里介绍几种实用的算法1Floyd2Dijkstra算法3Dijkstra+堆优化4Bellman-Ford5SPFA(ShortestPathFasterAlgorithm)0图的储存方式边目录(记下来,仅此而已)邻接矩阵(适合稠密图)邻接表(适合稀疏图)链式前向星(万能):从每一个点把与之相连的边拉成一条链用
- 图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)
HX_2022
数据结构与算法数据结构算法图论
图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)1、图论最短路径概述图论算法为了求解一个顶点到另一个顶点的最短路径,即如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径,使得沿此路径各边上的权值总和(即从源点到终点的距离)达到最小,这条路径称为最短路径(shortestpath)。最短路径有很多特殊的情况,包括有向图还是
- 代码随想录算法训练营第六十五天| 图论10
Rachela_z
算法图论
Bellman_ford队列优化算法(又名SPFA)代码随想录importcollectionsdefmain():n,m=map(int,input().strip().split())edges=[[]for_inrange(n+1)]for_inrange(m):src,dest,weight=map(int,input().strip().split())edges[src].append
- P10948 升降梯上 灰 题解
M_CI_
算法
Part0.前言没想到SPFA-SLF冲进了最优解第一版,比多数Dijkstra还快。评测记录(SPFA-SLF43ms)评测记录(Dijkstra44ms)Part1.题意简述有MMM个移动系数−Nusingnamespacestd;#defineintlonglong#definepiipair#definefifirst#definesesecondintn,m,s,c[30],dis[10
- Day60 图论part10
2401_83448199
图论
今天大家会感受到Bellman_ford算法系列在不同场景下的应用。建议依然是:一刷的时候,能理解原理,知道Bellman_ford解决不同场景的问题,照着代码随想录能抄下来代码就好,就算达标。二刷的时候自己尝试独立去写,三刷的时候才能有一定深度理解各个最短路算法。Bellman_ford队列优化算法(又名SPFA)代码随想录importjava.util.*;publicclassMain{pu
- 单源最短路径
陵易居士
数据结构与算法算法图论
目录无负权单源最短路径迪杰斯特拉算法(dijkstra)朴素版迪杰斯特拉小根堆优化版本dijkstra有负权的图的单源最短路径SPFA总结无负权单源最短路径在处理图论相关问题时,经常会遇到求一点到其他点的最短距离是多少的问题,很多实际应用场景的题目也可以转化成求最短路的问题,这里我们先来了解没有负权的图的最短路问题.迪杰斯特拉算法(dijkstra)迪杰斯特拉算法是由dijkstra提出的,它的主
- 【noip2009】最优贸易 tarjan+拓扑+dp或spfa
anantheparty
noip图论动态规划拓扑spfanoipspfatarjan拓扑排序dp
描述C国有n个大城市和m条道路,每条道路连接这n个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这m条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为1条。C国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。商人阿龙来到C国旅游。当他得知同一种商品
- 小结:路由引入问题
flying robot
HCIA/HCIP笔记
在华为路由器中,路由引入(RouteRedistribution)是实现不同路由协议间通信的关键技术。通过路由引入,可以将一种路由协议学习到的路由信息分发到另一种协议中,实现多协议网络的互通。以下是华为路由器不同协议间路由引入的总结:默认优先级直接连接路由(Direct):0OSPF:10IS-IS:15静态路由(Static):60RIP:100OSPFASE(OSPFAutonomousSys
- acwing搜索与图论(二)spfa
一缕叶
算法图论算法
#include#include#include#includeusingnamespacestd;typedefpairPII;constintN=10010;intn,m;inth[N],e[N],ne[N],w[N],idx;intdist[N];boolst[N];voidadd(inta,intb,intc){e[idx]=b,ne[idx]=h[a],w[idx]=c,h[a]=idx
- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http