- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- Python高级数据结构——分治法(Divide and Conquer)
Echo_Wish
Python笔记数据结构与算法Python算法数据结构
Python中的分治法(DivideandConquer):高级算法解析分治法是一种将问题划分为更小的子问题,解决子问题后再将结果合并的算法设计方法。它常被应用于解决复杂问题,如排序、搜索、图问题等。在本文中,我们将深入讲解Python中的分治法,包括基本概念、算法框架、具体应用场景,并使用代码示例演示分治法在实际问题中的应用。基本概念1.分治法的定义分治法将一个大问题划分为若干个规模较小且相互独
- 【Vue 3 Diff算法解析:从排队老头到最长递增子序列(LIS)】
Gazer_S
Vue3算法vue.js算法前端
Vue3Diff算法解析:从排队老头到最长递增子序列(LIS)前言Vue3的diff算法是前端框架中的一颗明珠,它通过巧妙的最长递增子序列(LIS)算法,将DOM操作的复杂度从O(n²)降低到O(nlogn)。但这个算法对很多开发者来说就像一本天书,充满了抽象的概念和复杂的逻辑。今天我们用通俗易懂的比喻来揭开它的神秘面纱。一、核心理念:老头排队的智慧1.1问题场景想象一下,有一群老头要按年龄从小到
- 人工智能概述
雪碧聊技术
人工智能人工智能
欢迎来到AI奇妙世界!亲爱的开发者朋友们,大家好!我是人工智能领域的探索者与分享者,很高兴在CSDN与你们相遇!在这里,我将持续输出AI前沿技术、实战案例、算法解析等内容,希望能和大家一起学习、交流、成长!为什么关注AI?人工智能正在重塑世界!深度学习让机器拥有“视觉”“听觉”**大模型(如GPT、文心一言)**改变人机交互方式数据科学赋能商业决策AI医疗助力精准诊断智能推荐优化用户体验无论你是A
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 大语言模型:人像摄影的“达芬奇转世”?——从算法解析到光影重塑的智能摄影革命
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
导言在摄影术诞生之初,达芬奇或许无法想象,他对于光影、比例和解剖的严谨研究,会在数百年后以另一种形式重生。今天,当摄影师面对复杂的光线环境或苦苦寻找最佳构图时,一位由代码构筑的“光影军师”正悄然降临——大语言模型(LLM)正以前所未有的方式,重塑人像摄影的创作边界。解构经典:大语言模型如何“消化”百年摄影智慧大语言模型并非凭空创造建议,其根基在于对海量摄影知识体系的深度理解与结构化重组。理论内化:
- 【自动驾驶】经典LSS算法解析——深度估计
IRevers
个人学习笔记自动驾驶算法人工智能深度学习python机器学习
LSS-Lift.Splat,Shoot论文题目:Lift,Splat,Shoot:EncodingImagesFromArbitraryCameraRigsbyImplicitlyUnprojectingto3D代码:https://github.com/nv-tlabs/lift-splat-shoot概括:先做深度估计和特征融合,然后投影到BEV视图中,在BEV视图中做特征融合,在融合后的特
- 直线插补动画引擎:从数学原理到C#实现——用代码绘制动态几何艺术
墨夶
C#学习资料c#算法开发语言
一、直线插补核心算法解析1.1DDA算法数学原理//////DDA算法实现直线插补///publicclassLineInterpolator{privatePointF_currentPoint;privatePointF_endPoint;privatefloat_stepSize;privatefloat_dx,_dy;privatefloat_xIncrement,_yIncrement;
- 多目标路径规划:IMOMD-RRT*算法详解
多目标路径规划项目结构与关键算法解析一、项目版本概览该路径规划项目共包含两个主要版本:两个版本的共同点:配置文件路径:config/algorithm_config.yamlsystem:使用不同算法的编号destination:定义目标点的ID列表map:指定使用的地图文件pseudo:1:仅规划起点到终点0:多目标路径规划两个版本的区别:✅新版特点:路径生成由src/main可执行文件完成;支
- LeetCode算法解析:全面掌握编程挑战与面试技能
黄浴
本文还有配套的精品资源,点击获取简介:LeetCode作为一个在线编程平台,提供了丰富的算法问题,帮助程序员提升编程技能和面试准备。内容覆盖了多种计算机科学领域,包括数据结构和算法,以及各类编程难题。解决这些问题有助于深化对编程语言、数据结构和算法的理解,并提高系统设计和软件开发能力。本解析可能会包含一个名为“leetcode-master”的开源项目,该项目包含了不同编程语言的LeetCode问
- Go项目限流全攻略:超越中间件的全方位解决方案
码农老gou
golang中间件开发语言
引言:限流在分布式系统中的重要性在当今高并发的互联网应用中,流量控制已成为保障系统稳定性的关键手段。一次突发的流量洪峰可能导致整个系统崩溃,造成不可估量的损失。作为Go开发者,我们常常会面临这样的面试问题:Go项目中如何实现限流?仅仅使用中间件就足够了吗?本文将深入探讨Go项目中的限流策略,分析中间件的局限性,并介绍超越中间件的全方位解决方案。一、常见限流算法解析1.令牌桶算法(TokenBuck
- React.js前端开发中的性能优化的常见挑战与解决思路
大厂前端小白菜
前端开发实战react.js性能优化前端
React.js前端开发中的性能优化的常见挑战与解决思路关键词:React性能优化、虚拟DOM、重新渲染、代码分割、内存管理摘要:本文深入探讨React应用开发中常见的性能瓶颈及其解决方案。从虚拟DOM原理到Fiber架构演进,从组件渲染机制到内存泄漏预防,通过算法解析、数学模型验证和实战案例,系统性地构建React应用性能优化知识体系。本文还将提供可落地的性能检测工具链和最佳实践方案。文章目录R
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 计算机视觉算法实战——手势识别:技术、实现与未来展望(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法人工智能
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.手势识别领域介绍手势识别作为人机交互(HCI)领域的重要组成部分,已经成为计算机视觉研究的热点方向之一。这项技术通过摄像头捕捉人类手部动作,利用算法解析这些动作所代表的含义,进而实现与计算机系统的自然交互。手势识别系统通常包含以下几个关键环节:图像采集、预处理、特征提取、分类识别以
- 自适应限流算法实战
双囍菜菜
#Go高吞吐架构算法Golang
自适应限流算法实战文章目录自适应限流算法实战一、限流算法演进史:从静态到自适应1.1传统限流算法的致命缺陷1.2自适应限流的革命性突破二、自适应限流核心指标体系2.1黄金四维指标2.2指标融合公式三、经典自适应算法解析3.1TCPBBR带宽自适应算法核心限流应用3.2NetflixConcurrencyLimit梯度下降策略智能探针机制四、AI赋能的智能限流4.1LSTM预测模型架构4.2强化学习
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- 从 PPO、DPO 到 GRPO:大语言模型策略优化算法解析
Gowi_fly
深度学习LLM强化学习
从PPO、DPO到GRPO:大语言模型策略优化算法解析背景与简介大语言模型(LLM)的训练通常分为预训练和后训练两个阶段。预训练阶段,模型在海量文本上学习下一词预测的能力;后训练阶段,我们希望进一步对齐模型输出与人类偏好,使模型给出的答案更符合人类期待。这常通过人类反馈强化学习(RLHF)来实现。RLHF的典型流程是:先让人类对模型的不同回答进行比较,得到偏好数据,然后训练一个奖励模型来评估回答质
- 45 | 位图:如何实现网页爬虫中的URL去重功能?
写文章的大米
数据结构&算法数据结构算法
↑↑↑欢迎关注,分享更多IT技术注:本笔记为公司内部技术小组持续学习2年多时间+个人整理不下5次的结果产出。目录45|位图:如何实现网页爬虫中的URL去重功能?算法解析位图(BitMap)布隆过滤器45|位图:如何实现网页爬虫中的URL去重功能?开篇题如何实现网页爬虫中的URL去重功能?算法解析需求功能性需求添加一个URL查询一个URL非功能性
- 前端十种排序算法解析
涛哥码咖
算法排序算法前端算法
1.冒泡排序1.1说明冒泡排序为一种常用排序算法,执行过程为从数组的第一个位置开始,相邻的进行比较,将最大的数移动到数组的最后位置执行的时间复杂度与空间复杂度为o(n^2)1.2执行过程从数组的第一个位置开始,截止位置为arr.length-1-i,相邻比较元素值如果前个元素值大于后个相邻元素值,交换两个元素的值重复执行2步骤for循环执行的次数完成及完成排序1.3实现代码functionbubb
- 操作系统关键知识点之实时调度算法解析与应用
一杯年华@编程空间
算法
操作系统关键知识点之实时调度算法解析与应用本次重新学习操作系统,希望将学习内容进行总结,与大家一同学习进步。以下将梳理文档中的核心知识点,并以通俗语言讲解,标注重点,最后通过表格总结。一、核心知识点总结与通俗讲解(一)实时系统的可调度性判定知识点:通过公式(\sum_{i=1}^{m}\frac{C_{i}}{P_{i}}\leq1)判断系统是否可调度,其中(m)为进程数,(C_i)为进程(i)的
- Brduino脑机连载(十一)P300 脑电识别常用算法
Brduino脑机接口技术答疑
算法
P300脑电识别常用算法解析在脑机接口(Brain-ComputerInterface,BCI)领域,P300作为一种极具代表性的事件相关电位(Event-RelatedPotentials,ERP)成分,具备重要的应用价值。通过对大脑在特定刺激下产生的P300电位进行识别,能够解读大脑意图,进而实现大脑与外部设备之间的交互。本文旨在深入探讨P300脑电识别中常用的一些算法,剖析其原理、应用及各自
- 可解释性医疗影像算法解析
智能计算研究中心
其他
内容概要在医疗影像分析领域,可解释性算法的核心价值在于建立临床诊断的透明化决策路径。本文通过系统性解构深度学习框架下的技术链条,揭示从数据标注、特征工程到模型评估的全流程透明度构建方法。研究聚焦卷积神经网络(CNN)与注意力机制的双向协同作用,量化分析其在肺结节检测、肿瘤分割等场景中的特征可视化效果。为平衡算法性能与可解释性需求,文中提出基于多维度评估指标的优化框架(见表1),涵盖准确率、召回率、
- AI人工智能主动学习的算法解析
AI云原生与云计算技术学院
人工智能学习算法ai
AI人工智能主动学习的算法解析关键词:主动学习、机器学习、人工智能、数据标注、查询策略、半监督学习、模型优化摘要:本文深入解析AI领域中的主动学习算法,这是一种让机器学习模型能够"主动"选择最有价值数据进行学习的智能方法。我们将从基本概念出发,通过生活化的比喻解释其工作原理,详细分析核心算法和数学模型,并提供Python实现示例。文章还将探讨主动学习的实际应用场景、工具资源以及未来发展趋势。背景介
- 飞牛fnNAS存储模式RAID 5数据恢复
beiger
NAS存储技术应用运维NAS飞牛fnOS飞牛NAS
目录一、添加硬盘二、创建RAID5存储空间三、上传测试文件四、拆除硬盘五、更换硬盘六、修复RAID5七、验证其内文件八、NAS系统崩溃后的数据盘前文《飞牛fnNAS存储空间模式详解》中介绍了fnNAS存储空间的几个模式,细心的网友应该能感受到,我是非常推崇RAID5的。它既兼顾了数据安全性,又减少了磁盘空间的浪费。RAID6也不错,但容量损失了1块硬盘的,虽然可以比RAID5多了1块盘的损坏。但我
- Python实现快速排序的三种经典写法及算法解析
宸津-代码粉碎机
算法数据结构python
今天想熟悉一下python的基础写法,那就从最经典的快速排序来开始吧:1、经典分治写法(原地排序)时间复杂度:平均O(nlogn),最坏O(n²)空间复杂度:O(logn)递归栈空间特点:通过左右指针交换实现原地排序defquick_sort(arr,low,high):iflowpivot]returnquick_sort(left)+middle+quick_sort(right)3、尾递归优
- Python 爬虫实战:猫眼电影登录与票房数据爬取(请求签名算法解析)
yansideyucsdn
python爬虫实战python爬虫算法
一、引言猫眼电影作为国内知名的电影票务平台,提供了丰富的电影票房数据和影评信息。通过Python爬虫技术,我们可以抓取猫眼电影的票房数据,进行数据分析和可视化展示。本文将详细介绍如何使用Python爬虫技术抓取猫眼电影的票房数据,并解析请求签名算法,实现合法合规的数据采集。二、项目背景与目标2.1项目背景猫眼电影平台拥有海量的电影票房数据和用户评价,这些数据对于电影行业从业者、研究人员以及普通观众
- C语言多级指针三维理解法:从变量地址到函数回调
星辰夜语666
Cc语言开发语言
博主介绍:精通C、Python、Java、JavaScript等编程语言,具备全栈开发能力。日常专注于分享编程干货、算法解析、项目实战经验,以及前沿技术动态。让我们一起在技术的道路上不断探索,共同成长!C语言多级指针三维理解法:从变量地址到函数回调1.引言在C语言的学习和使用过程中,指针一直是一个核心且具有挑战性的概念,而多级指针更是让许多开发者望而却步。多级指针不仅涉及到内存地址的复杂操作,还在
- 【普及−】洛谷P1706 全排列问题
CCF_NOI.
信息学奥赛C++图的遍历算法
见:P1706全排列问题-洛谷题目描述按照字典序输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字。输入格式一个整数n。输出格式由1∼n组成的所有不重复的数字序列,每行一个序列。每个数字保留5个场宽。输入输出样例输入#13输出#1123132213231312321说明/提示1≤n≤9。算法解析DFS,对楼上的回溯+剪枝进行详解。我们以N=3为例,构造一
- 运维实施37-RAID 技术(磁盘阵列)
JyHuai42
运维服务器数据库
磁盘阵列(RAID)概述磁盘阵列(RedundantArrayofIndependentDisks,RAID)是通过将多个物理磁盘组合成一个逻辑单元,以提高性能、冗余性或两者兼顾的技术。常见的RAID级别包括RAID0、RAID1、RAID5、RAID6等,每种级别有不同的特点和适用场景。RAID存储提供了不同的级别,每个级别具有不同的冗余和性能特性。RAID0:条带化(数据分块)但没有冗余,提供
- DALL·E 2 生成图像的风景增强:如何优化旅行照片
AI天才研究院
DALL·E2风景ai
DALL·E2生成图像的风景增强:如何优化旅行照片关键词:DALL·E2、图像生成、风景增强、AI修图、旅行照片优化、深度学习、计算机视觉摘要:本文深入探讨了如何利用OpenAI的DALL·E2模型来增强和优化旅行照片中的风景元素。我们将从技术原理出发,详细解析DALL·E2的图像生成机制,并提供实用的分步指南,展示如何通过AI技术将普通旅行照片转化为令人惊叹的艺术作品。文章包含核心算法解析、数学
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen