- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 论文阅读:《针对多目标优化和应用的 NSGA-II 综述》一些关于优化算法的简介
行然梦实
优化算法论文阅读算法数学建模
前言提醒:文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。内容由AI辅助生成,仅经笔者审核整理,请甄别食用。文章目录前言一些关于优化算法的缩写优化算法Ma,Haiping&Zhang,Yajing&Sun,Shengyi&Liu,Ting&S
- 息县一中第二期心理咨询师培训坚持分享第7天
1d586b19affb
“聚焦正向”:今天中午午休前手机小管家里收到大宝老师发来的周五语文单元测试成绩,打开成绩一看100分,这是让我有点儿意外的,这好像是她第一次语文得满分,等午睡结束了,我告诉大宝,她特别地开心,我接着就说:宝贝儿,你看我们努力认真去做了就会有一个满意的结果。接着女儿就开始向我讲述这次取得满分的经验,我耐心地听她说完……这不就是聚焦正向吗?让她自己学习总结自己的学习经验。
- 基于STM32平衡小车设计
1+2单片机电子设计
STM32单片机设计单片机
摘要随着智能硬件的发展,基于STM32的两轮智能平衡车作为一种新型的智能移动工具,具备较高的应用价值。本文旨在设计并实现一款基于STM32微控制器的智能平衡车系统,提升其稳定性和操控性,探索如何通过传感器数据和控制算法实现精确平衡控制。本设计基于STM32微控制器,选择了STM32F103系列作为核心控制器,具有足够的处理能力和丰富的外设接口。系统通过MPU6050传感器获取三轴加速度和三轴陀螺仪
- 基于粒子群优化算法的微电网调度(光伏、储能、电动车、电网交互)(Matlab代码实现)
优化算法侠_科研
matlab
欢迎来到本博客❤️❤️❤️本文目录如下:⛳️⛳️⛳️目录1概述1.微电网概述2.粒子群优化算法(PSO)3.应用于微电网调度的优势4.研究内容光伏发电调度储能系统调度电动车充电调度与主电网交互5.实现挑战结论2基于粒子群算法的微电网调度结果4写在最后5Matlab代码实现1概述微电网(Micro-Grid)日前经济调度问题是指考虑电网的分时电价基础上,对常规负荷、光伏出力、电动车出力进行日前(未来
- 中原焦点团队石丽焦点解决网络班坚持原创分享第279天2020年3月10日
点石成金的尘世纷扰
《约练反思》上午9:10和两位老师做了一场约练。在这场约练当中,我做的是来访者。想就后续自己在学习上遇到的一些困惑,和我认为比较有经验的老师沟通了一下。其实就于目前这个困惑是想让咨询师做一下他自己的自我暴露,更希望在当下自己这个情况下让咨询师老实点一点,做一下引领,而不希望咨询师过多的挖掘我自己对待问题的答案。所以说咨询师老师就从他的角度向我自我暴露了他在当初这一路走过来的学习经验。我总结之后大概
- 机器学习算法(六)---逻辑回归
向云端UP
机器学习模型机器学习算法逻辑回归
目录一、逻辑回归1.1模型介绍1.2工作原理1.2.1对数几率模型1.2.2逻辑回归与Sigmoid函数1.3.3熵、相对熵与交叉熵1.3损失函数和优化算法1.3.1损失函数的理论基础1.3.2优化算法1.3.2.1梯度下降算法局限1.3.2.2随机梯度下降与小批量梯度下降1.4算法流程1.5逻辑回归优缺点1.6案例1.7classification_report()参数二、逻辑回归与线性回归的区
- 基于蛇优化算法优化的混合核极限学习机(HKELM)的回归预测
基于蛇优化算法优化的混合核极限学习机(HKELM)的回归预测文章目录基于蛇优化算法优化的混合核极限学习机(HKELM)的回归预测1.HKELM原理2.预测问题求解3.基于蛇优化算法优化的HKELM4.实验结果5.Matlab代码1.HKELM原理核极限学习机(KELM)是一种单隐含层前馈神经网络,通过引入核函数改善极限学习机(ELM)性能,其输出可表示为:f(x)=h(x)HU(ZC+HHU)−1
- 基于强化学习的工业SCR脱硝系统控制算法设计与实现
pk_xz123456
算法python人工智能python深度学习数据挖掘
基于强化学习的工业SCR脱硝系统控制算法设计与实现1.引言选择性催化还原(SCR)脱硝系统是火电厂等工业设施中用于降低氮氧化物(NOx)排放的关键环保设备。传统的PID控制方法在面对SCR系统非线性、大滞后等特性时往往表现不佳。本文将详细介绍如何利用强化学习技术设计智能控制器,实现SCR脱硝系统的优化控制。2.系统概述与问题分析2.1SCR脱硝系统工作原理SCR系统通过在催化剂作用下,向烟气中喷入
- 【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究Matlab代码
Matlab科研工作室
无人机边缘计算matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- 塔防战争:动态寻径与成长系统的控制论架构
闲人编程
塔防游戏pyqt6路径JPS动态智能
目录塔防战争:动态寻径与成长系统的控制论架构引言第一章炮塔成长系统1.1属性升级模型1.2分支进化树第二章动态路径规划2.1JPS优化算法2.2实时障碍更新第三章敌人行为系统3.1多波次生成3.2智能绕障策略第四章经济平衡系统4.1资源流动方程4.2动态定价模型第五章特殊能力系统5.1连锁反应模型5.2减速力场公式第六章可视化优化6.1路径热力图6.2攻击范围环第七章性能调优7.1空间划分加速7.
- 【创新无忧】蚁狮算法ALO优化广义神经网络GRNN数据回归预测【含Matlab源码 10433期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家博主简介:985研究生,Matlab领域科研开发者;座右铭:行百里者,半于九十。代码获取方式:CSDNMatlab武动乾坤—代码获取方式更多Matlab智能算法优化神经网络分类预测仿真内容点击①付费专栏智能算法优化神经网络分类预测⛳️关注CSDNMatlab武动乾坤,更多资源等你来!!⛄一、智能优化算法优化广义神经网络GRNN数据回归预测1智能优化算法优化广义回归神经网
- 智能优化算法应用:基于粒子群算法PID参数优化 - 附代码
智能优化算法应用:基于粒子群算法PID参数优化-附代码文章目录智能优化算法应用:基于粒子群算法PID参数优化-附代码1.PID简介2.粒子群算法简介3.适应度函数设计4.算法实验与结果5.参考文献:6.Matlab代码摘要:本文主要介绍如何用粒子群算法进行PID参数的优化。1.PID简介PID(Proportion-Integration-Differentiation)控制器通过比例单元P、积分
- 【对比】群体智能优化算法 vs 贝叶斯优化
TIM老师
transformer深度学习人工智能
在机器学习、工程优化和科学计算中,优化算法的选择直接影响问题求解的效率与效果。群体智能优化算法(SwarmIntelligence,SI)和贝叶斯优化(BayesianOptimization,BO)是两种截然不同的优化范式,分别以不同的哲学和数学基础解决高维、非凸、多峰等问题。本文将从原理、特点到应用场景,深入解析两者的异同。一、基础概念1.群体智能优化算法群体智能算法受自然界生物群体行为启发(
- 三轴云台之模糊控制算法篇
三轴云台的模糊控制算法是一种基于模糊逻辑理论的智能控制方法,适用于处理云台系统中的非线性、时变性和不确定性问题。其核心思想是通过模拟人类的语言推理和决策过程,将精确的输入变量(如角度偏差、角速度偏差)转化为模糊集合,利用预设的模糊规则进行推理,最终输出控制信号调整云台姿态。一、模糊控制算法原理模糊化将输入变量(如角度偏差、角速度偏差)映射到模糊集合(如“负大”“负小”“零”“正小”“正大”),每个
- 三轴云台之远程控制与通信技术篇
三轴云台的远程控制与通信技术是实现其高效、稳定运行的核心,尤其在无人机航拍、远程监控、影视制作等领域发挥着关键作用。以下从通信协议、无线传输、控制算法及抗干扰技术四个方面展开分析:一、通信协议与数据传输三轴云台的通信协议需满足实时性、稳定性和低延迟的要求,常见协议包括:PWM(脉冲宽度调制)通过改变脉冲信号的占空比控制电机转速和转向,适用于简单指令传输,硬件成本低,但带宽有限,难以支持复杂数据传输
- python学习DAY12打卡
星仔编程
python学习打卡学习
启发式算法超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。启发式算法(HeuristicAlgorithm)是一种“经验法则”式的求解方法,用近似、快速、可接受的策略,在合理时间内找到问题的“足够好
- NFAP1060L3TT是一个完全集成的逆变器功率级,由一个高压驱动器、六个IGBT和一个热敏电阻组成,适用于驱动永磁同步(PMSM)电机、无刷直流(BLDC)电机和交流异步电机NFAP1060L3
Shang13113048791
信息与通信边缘计算网络驱动开发
NFAP1060L3TT是一个完全集成的逆变器功率级,由一个高压驱动器、六个IGBT和一个热敏电阻组成,适用于驱动永磁同步(PMSM)电机、无刷直流(BLDC)电机和交流异步电机。IGBT配置在3相桥中,下支路有单独的发射极连接,在选择控制算法时具有最大的灵活性。功率级具有全方位的保护功能,包括交叉传导保护、外部停机和欠压锁定功能。连接到过电流保护电路的内部比较器和参考允许设计者设置过电流保护水平
- Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例(含模型描述及示例代
nantangyuxi
Python含模型描述及示例代码算法神经网络python人工智能大数据深度学习机器学习
目录Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例...2项目背景介绍...2项目目标与意义...3高效的模型优化...3深度特征提取...3序列数据的时序建模...3
- 《有效组织的形式》
啊大甘
202306-19《有效组织的形式》(《课程与教学的基本原理》)摘录:1、在编制一组有效组织起来的学习经验时,需要符合三大标准,即连续性、顺序性和整合性。2、在探讨学习经验的组织时,我们可以从时间角度,也可以从一个领域到另一个领域的角度来考查学习经验之间的关系。思考:连续性与顺序性在我们的教学之中是时常有所体现的,这点主要是从时间角度去设计。在我们的学习阶段教育之中本就一直在遵循这种顺序性的教学方
- 单片机怎么烧程序
深圳安凯星单片机开发方案公司
51单片机单片机
单片机烧程序是将编写好的程序代码写入单片机内部存储单元,让单片机按照预设逻辑工作的过程,是单片机应用开发中不可或缺的环节。无论是简单的灯光控制程序,还是复杂的工业控制算法,都需要通过烧程序这一步骤,才能让单片机发挥作用。烧程序前的准备工作单片机烧程序前,需要做好硬件和软件两方面的准备。硬件方面,核心设备包括目标单片机、编程器(或下载器)、电脑以及连接导线。编程器是连接电脑与单片机的桥梁,不同型号的
- 读《文言文阅读教学设计基本原理》(二十)
教与学相长
——文言文阅读教学设计如何形成?1.对课文进行教学解读,确定文本的要紧处、关键点。第一,初读课文,结合助读材料,对课文教学要点有一个整体把握。第二,细读课文,从文本的具体段落、语句中确定文本要紧处、解读的关键点。第三,区分不同类型的文言现象,确定“同中有异”的常用字词、特殊语句为教学重点。2.把握学生阅读“这一篇”课文的学习经验状况,确定同化、顺应的策略。第一,把握学生的学习经验状况(生活经验和语
- 【2025版】最新大模型就业方向,零基础入门到精通,收藏这篇就够了
程序员_大白
大模型程序员职业与发展大模型人工智能
大模型就业方向主要集中在以下几个核心领域:数据治理方向:涉及爬虫、数据清洗、ETL、DataEngine、Pipeline等工作,确保数据质量和可用性,支持模型训练和运行。平台搭建方向:负责分布式训练、大模型集群以及工程基建,构建高效的模型运行平台,支持高性能计算。模型算法方向:专注于开发新的预训练模型和优化算法,提升模型的准确性和效率,适用于NLP、语音助手、对话机器人等领域。部署落地方向:包括
- 21. 反向传播、优化器、模型的训练
啥都想学的大学生
小土堆--Pytorch学习pytorch
反向传播、优化器、模型的训练1.什么是反向传播在我们从输入层对数据进行一系列的操作,包括特征提取、函数激活、维度变换等,从输入层到输出层的各种变换可以称为前向传播。前向传播的用处是为了对输入数据转换为我们需要的回归值或者标签类别值,但是这种输出结果往往是有偏差的,这种偏差是通过误差函数进行计算的。当我们构建了一个完整的前向传播结构后,就需要考虑如何使用误差来优化我们的网络结构。常见的优化算法包括梯
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 《我不惧怕成为这样“强硬”的姑娘》读书笔记05
幺拐妖怪
在大学那些年因为我考取的并不是什么名牌大学,所以我一直羡慕着那些考上名牌大学的学霸们。作者刘媛媛与北大的那些年让我意识到:学霸之所以是学霸,是因为他们都在抓住飞逝的光阴,为着出厂的一刻做准备,努力变成一盒优质的牛奶。反观我的大学四年,好像都沉浸在社团活动里面,对学业并不怎么上心,而且也没怎么多多跟专业的老师们沟通交流,获取学习经验和心得。在大学里面,我也看到过许多不同的人,有些人在学校里面就肆意开
- 14.优化算法之BFS解决FloodFill算法1
muyierfly
算法题算法宽度优先深度优先
0.FloodFill简介dfs:深度优先遍历(红色)bfs:宽度优先遍历1.图像渲染算法原理classSolution{int[]dx={0,0,1,-1};int[]dy={1,-1,0,0};publicint[][]floodFill(int[][]image,intsr,intsc,intcolor){intprev=image[sr][sc];//统计刚开始的颜⾊if(prev==co
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- 【Pandas超实用经验汇总-数据建模分析】
Mr.小海
Python数据挖掘数据分析python
Pandas超实用经验汇总-数据分析前言基本方法1.读取文件2.查看数据3.修改、删除、替换数据等总结前言看见了很多教程虽然很全,但是很多技巧容易忘记且几乎用不上,读起来晦涩难懂,今天我给大家总结了Pandas的一些学习经验技巧,包含常见日常使用的pandas知识,以及一些技巧,这些技巧常见于数学建模,数据分析,数据挖掘比赛等。基本方法1.读取文件方法如下:importpandasaspd#正常写
- 三轴云台之姿态调节技术篇
三轴云台的姿态调节技术通过机械解耦、传感器融合、智能控制算法及动态补偿机制协同实现,能在复杂运动环境下保持高精度稳定,其核心技术与实现方式如下:一、机械结构优化:三轴解耦与轻量化设计三轴独立驱动解耦俯仰轴(Pitch)、横滚轴(Roll)、航向轴(Yaw)通过无刷电机+编码器+驱动器模块化设计实现运动解耦,避免轴间干扰。应用场景:无人机急转弯时,航向轴优先响应姿态变化,俯仰轴同步补偿相机倾斜,横滚
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio