- 深入剖析 boost::unique_lock<boost::mutex>
程序员乐逍遥
C++Boost库C/C++多线程编程专题C++boost线程锁
在高并发的C++程序中,线程安全是永恒的主题。而boost::unique_lock作为Boost.Thread库中的核心组件,为开发者提供了强大、灵活且异常安全的互斥量管理机制。它不仅是RAII(ResourceAcquisitionIsInitialization)设计模式的典范,更是实现复杂线程同步逻辑的基石。一、从lock_guard的说起在介绍unique_lock之前,我们先回顾其“简
- xgboost原理
茶尽
阅读XGBoost与BoostedTree基学习器:CART每个叶子节点上面有一个分数不够厉害,所以找一个更强的模型treeensemble对每个样本的预测结果是每棵树预测分数的和目标函数采用boosting(additivetraining)方法,每一次都加入一个新的函数。依赖每个数据点上的误差函数的一阶导数和二阶导(区别于GBDT)。树的复杂度复杂度包含了一棵树里面的叶子个数和输出分数的L2模
- 【树模型与集成学习】(task6)梯度提升树GBDT+LR
山顶夕景
推荐算法#集成学习与KaggleGBDT推荐算法机器学习
学习总结(1)不同问题的提升树学习算法,主要区别在于使用的损失函数不同,如用平方误差损失函数的回归问题、用指数损失函数的分类问题、用一般损失函数的一般决策问题等。(2)不管是二分类问题的提升树,还是回归问题的提升树,这里的损失函数都很方便:前者是用指数损失函数,所以可以当做是Adaboost的个例,Aadaboost的流程;而后者是当使用平方误差损失时,可以直接拟合残差。而使用不同的损失函数,对应
- HarmonyOS Flutter Boost完全接入手册:爬完所有坑的实战指南
二蛋和他的大花
flutterharmonyharmonyosflutter华为
FlutterBoost在做混合开发非常实用,但官方文档的不清晰。本文将基于实战经验,帮助大家避开那些常见的坑,快速上手并高效开发。前言:为何要写这篇手册在开发过程中,我发现官方文档对于FlutterBoost的集成描述不够清晰,按照官方文档操作会遇到诸多问题。因此,我决定结合自己的实战经验,为大家提供一份详细且实用的集成手册,希望能帮助大家少走弯路。一、集成问题:从源码到har包的抉择在开发初期
- OCCT Handle 学习导论
心瞳几何原语
学习OCCTOCCTQt
基本设计思想这是一个侵入式智能指针(类似于boost::intrusive_ptr),引用计数器直接嵌入在被管理的对象中(Standard_Transient基类),而不是单独分配内存存储计数器。核心成员变量private:Standard_Transient*entity;//指向被管理对象的指针引用计数管理机制BeginScope()-增加引用计数voidBeginScope(){if(ent
- 机器学习-XGBoost和SHAP解析数据
python机器学习ML
机器学习人工智能数据分析python
一、引言在机器学习领域,XGBoost表现出色,具有高效性、准确性、灵活性和良好的防过拟合能力。高效性使其能快速处理大规模复杂数据,降低训练时间成本。通过组合弱学习器提高准确性和泛化能力。其支持多种任务和自定义指标,参数调优选项丰富。内置正则化机制防止过拟合。同时,SHAP对模型解释起关键作用,能计算特征的SHAP值来明确特征对预测结果的贡献,帮助理解模型决策。二、数据准备和模型训练1.导入所需库
- c++11智能指针
无敌的牛
C++学习c++开发语言
目录1.写在前面2.shared_ptr的循环引用问题3.weak_ptr介绍4.shared_ptr的线程安全问题5.C++11和Boost的关系6.内存泄漏7.如何检测内存泄漏8.如何避免内存泄漏1.写在前面上一节介绍智能指针的博客中,我们给出了智能指针实际是把资源委托给对象去管理的一种思想,让对象根据资源的生命周期自动调析构函数来释放资源,然后c++98设计的智能指针它支持拷贝但是它设计思想
- Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码matlab神经网络集成学习人工智能大数据深度学习机器学习
目录Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例2项目背景介绍...2项目目标与意义...21.提高时序数据预测准确性...22.弱学习器组合的优势...33.提高数据预测的泛化能力...3
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 【独家原创】基于XGBoost+SHAP可解释性分析的分类预测 Matlab代码(多输入单输出)
机器学习和优化算法
SHAP(Matlab)机器学习分类XGBoostSHAPshap分析可解释性分析
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介(XGBoost+SHAP)基于XGBoost的数据多输入单输出+SHAP可解释性分析的分类预测模型由于XGBoost在使用SHAP分析时速度较慢,程序中附带两种SHAP的计算文件(正常版和提速版本),具体使用教程见使用步骤文件(你的数据适合哪种均有说明),十分简单用哪个调用哪个即可!!!1、在机器学习和深度学习领域,模型复杂度的不断攀升
- 做人脸识别遇到的问题
princesshu
pythonpycharm
最开始安装的时候直接用pipinstalldlib却一直显示错误提示“Failedbuildingwheelfordlib”之后去网上搜来了各种下载链接依然错误我发现问题是!!python版本问题,我下载所有的包都与我的python版本不匹配于是我先安装了cmakeboost之后最后直接在终端安好了dlib~
- flutter Boost android页面跳转到 Flutter 页面
戸田有希
flutterandroid
FlutterBoost:从Android跳转到Flutter页面本文将详细介绍如何使用FlutterBoost在Android应用程序中实现页面跳转到Flutter页面。FlutterBoost是一个可以帮助你在不同平台之间(Android和iOS)进行无缝跳转的工具。一、实现流程首先,让我们明确一下实现的流程。整个流程可以归纳为下表:步骤说明1创建FlutterModule2集成Flutter
- 真相曝光:佛萨奇Force原力元宇宙背后的故事和经济模型
口碑信息传播者
在数字化的浪潮中,佛萨奇2.0以其创新的智能合约系统,成为行业的焦点。不仅延续了经典的矩阵模式,还引入了NFT、BOOST矩阵、元宇宙等全新元素,展现出它对未来数字生态的深远布局。特别是结合NFT,佛萨奇2.0激发了无限的想象和可能。13分钟视频彻底弄明白佛萨奇Force原力元宇宙项目是什么佛萨奇2.0:智能合约的核心佛萨奇2.0的核心在于其智能合约系统。智能合约是存储在区块链上的自动执行程序,当
- 《How to Take Smart Notes》读书笔记1
LY320
最近在读一本书,题为《HowtoTakeSmartNotes:OneSimpleTechniquetoBoostWriting,LearningandThinking–forStudents,AcademicsandNonfictionBookWriters》1。尚未读完,分享一些读这本书的感想,我的一些心得,和不解。这本书让我觉得最有收获的点是更新了我对记录和整理笔记的认识。通常我们在记录笔记时
- boost::math模块使用 agm 以高精度计算 lemniscate 常量
源代码大师
Boost完整实战教程
boost::math模块使用agm以高精度计算lemniscate常量实现功能C++实现代码实现功能boost::math模块使用agm以高精度计算lemniscate常量C++实现代码#include#include#include
- C++常用库交叉编译方法(一)(环境构建和Qt以及Boost)
原文链接欢迎大家对于本站的访问-AsterCasc前言首先这里建议从Ubuntu20.04镜像开始,目前相对最稳定的版本,无论是CentOS还是其他版本的Ubuntu多多少少都会遇到各种很烦的问题,虽然说不是解决不了,但是从Ubuntu20.04容器镜像开始是最节省时间的方式,Docker默认情况下会让容器使用宿主机的大部分资源,包括CPU和内存,虽然具体的占用情况取决于宿主机的硬件资源和Dock
- 【亲测免费】 CatBoost 教程项目使用指南
CatBoost教程项目使用指南tutorials项目地址:https://gitcode.com/gh_mirrors/tutorials1/tutorials1.项目介绍CatBoost是一个高效、灵活且易于使用的梯度提升库,特别适用于处理分类特征。它由Yandex开发,广泛应用于机器学习和数据科学领域。CatBoost提供了丰富的功能,包括自动处理分类特征、支持GPU训练、内置的交叉验证和模
- 深入解析与彻底解决 Android 集成 Flutter Boost 时页面闪烁问题
二蛋和他的大花
flutterandroidflutter
在混合开发中,将Flutter模块集成到Android应用中是一种常见的需求。然而,许多开发者在集成过程中遇到了页面闪烁的问题,这严重影响了用户体验。本文将深入分析这一问题,并提供多种解决方案,帮助开发者彻底解决这一难题。一、页面闪烁问题分析集成方式:Flutter模块集成在Android的Fragment中。从原生页面返回Flutter页面时,带有动画的组件出现闪烁。问题表现:从原生页面返回Fl
- python和C++相互调用使用
妄想出头的工业炼药师
c++开发语言
结论:首选PyBind11:综合性能、易用性最佳(GitHub⭐48k+)优先考虑Cython:涉及大量科学计算或已有Cython代码避免Boost.Python(历史包袱重)和SWIG(配置复杂),除非维护旧项目。python调用C++接口C++调用python接口在C++中使用Python库,特别是使用pybind11,是一个非常强大的方法,可以让你在C++项目中轻松地利用Python的强大功
- Outcome 使用教程
Outcome使用教程outcomeProvidesverylightweightoutcomeandresult(non-Boostedition)项目地址:https://gitcode.com/gh_mirrors/ou/outcome1.项目介绍Outcome是一个C++14库,用于报告和处理函数失败。它可以作为异常处理机制的替代或补充。在某些场景下,使用C++的异常处理可能不合适,例如异
- 【Elasticsearch】自定义评分检索
G皮T
#Elasticelasticsearch大数据自定义评分查询检索_score搜索引擎
自定义评分检索1.自定义评分2.为什么需要自定义评分3.搜索结果相关度4.影响相关度评分的查询子句5.控制相关度评分的方法5.1FunctionScoreQuery5.1.1基础查询部分5.1.2评分函数部分(functions数组)第一个函数:品牌加权第二个函数:销量因子第三个函数:时间衰减5.1.3评分组合方式score_modeboost_mode5.1.4整体效果5.2使用Boosting
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Docker 容器全生命周期操作指南
以下是Docker容器全生命周期操作指南,按步骤清晰划分,涵盖从镜像加载到容器销毁的完整流程:一、镜像加载与验证1.从.tar文件加载镜像sudodockerload-iubuntu18.04-boost1.88-cmake3.27-git_1.0.tar2.查看已加载的镜像sudodockerimages输出示例:REPOSITORYTAGIMAGEIDCREATEDSIZEubuntu18.0
- 深度剖析:OPENPPP2 libtcpip 实现原理与架构设计
liulilittle
网络智能路由器c++开发语言tcptcp/ip通信
️一、核心架构设计(可视化图表)1.1整体架构图物理网络TAP/TUN设备原始数据包libtcpip输入层LWIP协议栈Netstack转换层Boost.AsioSocket目标服务libtcpip输出层1.2分层架构图内核空间用户空间内核网络栈IP协议处理网络接口层TCP/UDP协议栈Socket转换层系统Socket接口物理网络⚙️二、LWIP协议栈集成剖析2.1LWIP定制化实现//内存管理
- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- 【集成学习】Bagging、Boosting、Stacking算法详解
文章目录1.相关算法详解:2.算法详细解释:2.1Bagging:2.2Boosting:2.3Stacking:2.4K-foldMulti-levelStacking:集成学习(EnsembleLearning)是一种通过结合多个模型的预测结果来提高整体预测性能的技术。它通过将多个学习器的结果集成起来,使得最终的模型性能更强,具有更好的泛化能力。常见的集成学习框架包括:Bagging、Boos
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- Boost.Asio 的 TCP 通信教程
FHKHH
网络编程tcp/ip网络协议网络
一、引言本教程将详细介绍如何使用Boost.Asio库实现一个简单的TCP通信示例,包括服务器端和客户端的代码编写、编译以及运行流程。同时,我们会对通信过程中的各个关键步骤进行详细讲解,帮助读者理解TCP通信在Boost.Asio中的实现方式。后续如果需要扩展功能,例如并发处理多个客户端连接或使用异步通信等,可以在此基础上进行修改。二、准备工作确保系统中已安装Boost库。确保编译器(如g++)能
- Boost.Asio 同步读写操作详解
Boost.Asio同步读写操作详解Boost.Asio是一个高效的C++网络和底层I/O库,提供了多种API用于同步和异步数据传输。本文将详细介绍同步操作及其具体实现,包括write_some、send、write、read_some、receive、read和read_until等。1.同步写:write_some功能:将指定数量的字节写入到套接字。如果发送缓冲区已满,则只写入一部分数据并返回
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D