【FPGA】双端口RAM的设计(异步读写)

上篇写了双端口RAM设计(同步读写):https://blog.csdn.net/Reborn_Lee/article/details/90647784

关于异步读写和同步读写,在单端口RAM设计中也提到过:https://blog.csdn.net/Reborn_Lee/article/details/90646285

这里就不再叙述了,总之就是和时钟无关了。


下面我们同样会给出Verilog设计和仿真验证。

有了同步读写的Verilog描述,异步简直易如反掌:

`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Create Date: 2019/05/28 22:53:20
// Design Name: 
// Module Name: ram_dp_ar_aw
//////////////////////////////////////////////////////////////////////////////////


module ram_dp_ar_aw #(
parameter DATA_WIDTH = 8,
parameter ADDR_WIDTH = 8,
parameter RAM_DEPTH = 1 << ADDR_WIDTH
)(
input [ADDR_WIDTH - 1 : 0] address_0 , // address_0 Input
inout [DATA_WIDTH-1 : 0] data_0    , // data_0 bi-directional
input cs_0      , // Chip Select
input we_0      , // Write Enable/Read Enable
input oe_0      , // Output Enable
input [ADDR_WIDTH - 1 : 0] address_1 , // address_1 Input
inout [DATA_WIDTH-1 : 0] data_1    , // data_1 bi-directional
input cs_1      , // Chip Select
input we_1      , // Write Enable/Read Enable
input oe_1        // Output Enable
); 

//--------------Internal variables---------------- 
reg [DATA_WIDTH-1:0] data_0_out ; 
reg [DATA_WIDTH-1:0] data_1_out ;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];


//initialization

// synopsys_translate_off
integer i;
initial begin
    for(i=0; i < RAM_DEPTH; i = i + 1) begin
        mem[i] = 8'h00;
    end
end
// synopsys_translate_on


//--------------Code Starts Here------------------ 
// Memory Write Block 
// Write Operation : When we_0 = 1, cs_0 = 1
always @ (address_0 or cs_0 or we_0 or data_0
or address_1 or cs_1 or we_1 or data_1)
begin : MEM_WRITE
  if ( cs_0 && we_0 ) begin
     mem[address_0] <= data_0;
  end 
  else if  (cs_1 && we_1) begin
     mem[address_1] <= data_1;
  end
end

// Tri-State Buffer control 
// output : When we_0 = 0, oe_0 = 1, cs_0 = 1
assign data_0 = (cs_0 && oe_0 && !we_0) ? data_0_out : 8'bz; 

// Memory Read Block 
// Read Operation : When we_0 = 0, oe_0 = 1, cs_0 = 1
always @ (address_0 or cs_0 or we_1 or oe_0)
begin : MEM_READ_0
  if (cs_0 && !we_0 && oe_0) begin
    data_0_out <= mem[address_0]; 
  end else begin
    data_0_out <= 0; 
  end
end 

//Second Port of RAM
// Tri-State Buffer control 
// output : When we_0 = 0, oe_0 = 1, cs_0 = 1
assign data_1 = (cs_1 && oe_1 && !we_1) ? data_1_out : 8'bz; 
// Memory Read Block 1 
// Read Operation : When we_1 = 0, oe_1 = 1, cs_1 = 1
always @ (address_1 or cs_1 or we_1 or oe_1)
begin : MEM_READ_1
  if (cs_1 && !we_1 && oe_1) begin
    data_1_out <= mem[address_1]; 
  end else begin
    data_1_out <= 0; 
  end
end

endmodule // End of Module ram_dp_ar_aw

仿真同步的做过了,这个会难吗?

虽然这里没用到时钟,但测试文件,我仍可以使用时钟,作为一个时间标尺吧,这样就可以直接用上篇博文的测试文件,我也懒着改了(这里说的直接用,是大体上直接用,但仍需改动例化,以及模块名字什么的,以及参数等等):

先读初始值,什么时候给地址什么时候给数据:

【FPGA】双端口RAM的设计(异步读写)_第1张图片

地址0写,地址1读:

【FPGA】双端口RAM的设计(异步读写)_第2张图片

双端口同时读:(地址与数据对齐)

【FPGA】双端口RAM的设计(异步读写)_第3张图片

最后还是给出测试文件吧:

`timescale 1ns / 1ps

module ram_dp_ar_aw_tb;

reg clk       ; // Clock
reg [7 : 0] address_0 ; // address_0 input
wire [7 : 0] data_0    ; // data_0 bi-directional
reg cs_0      ; // Chip Select
reg we_0      ; // Write Enable/Read Enable
reg oe_0      ; // Output Enable
reg [7 : 0] address_1 ; // address_1 input
wire [7 : 0] data_1    ; // data_1 bi-directional
reg cs_1      ; // Chip Select
reg we_1      ; // Write Enable/Read Enable
reg oe_1 ;        // Output Enable


initial begin
	clk = 0;
	forever
		#2 clk = ~clk;
end

reg [7 : 0] data_in0; //写数据时候,双向总线与data_in0连接(这样做的目的是保证总线在某一时刻读和写,二者之一有效)
assign data_0 = (cs_0 && we_0 && !oe_0) ? data_in0 : 8'dz;

reg [7 : 0] data_in1; //写数据时候,双向总线与data_in1连接(这样做的目的是保证总线在某一时刻读和写,二者之一有效)
assign data_1 = (cs_1 && we_1 && !oe_1) ? data_in1 : 8'dz;

integer i = 0;

initial begin
oe_0 = 0;
oe_1 = 0;
we_0 = 0;
we_1 = 0;
cs_0 = 0;
cs_1 = 0;
address_0 = 0;
address_1 = 0;
data_in0 = 0;
data_in1 = 0;
//先读出初识值(两套地址一起读)
#4
cs_0 = 1;
cs_1 = 1;
oe_0 = 1;
oe_1 = 1;

for(i = 0; i < 256; i = i + 1) begin
	@(negedge clk) begin
		address_0 = i;
		address_1 = i;
	end

end

//地址0写,地址1读
 @(negedge clk) begin
	we_0 = 1;
	we_1 = 0;
	oe_0 = 0;
	oe_1 = 1;
	
 end
 
for(i = 0; i < 256; i = i + 1) begin
	@(negedge clk) begin
	address_0 = i;
	data_in0 = data_in0 + 1;
	address_1 = i;
	end
 
end

//地址0读·,地址1读
 @(negedge clk) begin
	we_0 = 0;
	we_1 = 0;
	oe_0 = 1;
	oe_1 = 1;
	
 end

for(i = 0; i < 256; i = i + 1) begin
	@(negedge clk) begin
	address_0 = i;
	address_1 = i;
	end
 
end


//结束吧,片选结束
@(negedge clk) begin
cs_0 = 0;
cs_1 = 0;
end

#100 $stop;


end


ram_dp_ar_aw #(
.ADDR_WIDTH(8), //给参数
.DATA_WIDTH(8)
 ) u_ram(
.address_0(address_0),
.data_0(data_0),
.cs_0(cs_0),
.we_0(we_0),
.oe_0(oe_0),
.address_1(address_1),
.data_1(data_1),
.cs_1(cs_1),
.we_1(we_1),
.oe_1(oe_1)
);



endmodule 

参考链接:http://www.asic-world.com/examples/verilog/ram_dp_ar_aw.html

 

 

 

 

你可能感兴趣的:(Verilog/FPGA,实用总结区)