Fibonacci

法1 : recursion. O(pow(2, n))

public long  FibRecursion(int n){
		if(n < 2){
			return n;
		}
		return FibRecursion(n - 2) + FibRecursion(n - 1);
	}
 
   
  

法2:iteration. O(n)

public long FibIteration(int n ){
		if(n < 2){
			return n;
		}
		long  a = 0;
		long  b = 1;
		for(int i = 2; i <= n; i++){
			long  temp = b;
			b += a;
			a = temp;
		}
		return b;
	}


法3: DP , O(n)

public long  FibDP(int n, long[] dp){
		if(n < 2){
			return n;
		}
		if(dp[n] != 0)
			return dp[n];
		dp[n] = FibDP(n - 1, dp) + FibDP(n - 2, dp);
		return dp[n];
	}



法4:equation: log(n) a=f((n+1)/2) ;b=f((n+1)/2-1) ; if n is odd f(n)=a*a+b*b;  if n is even f(n)=a*a+2*a*b;

public long FibEquation(int n) {
		if (n < 2) {
			return n;
		}
		long a = FibEquation((n + 1) / 2);
		long b = FibEquation((n + 1) / 2 - 1);
		if (n % 2 == 1) {
			return a * a + b * b;
		}
		return a * a + 2 * a * b;
	}

 
  

你可能感兴趣的:(Fibonacci)