机器学习十二 误差原因与模型复杂度

误差原因(Error):用于测量模型性能的基本指标。

在模型预测中,模型可能出现的误差来自两个主要来源,即:因模型无法表示基本数据的复杂度而造成的偏差(bias),或者因模型对训练它所用的有限数据过度敏感而造成的方差(variance)


偏差:准确率和欠拟合

如果模型具有足够的数据,但因不够复杂而无法捕捉基本关系,则会出现偏差。这样一来,模型一直会系统地错误表示数据,从而导致准确率降低。这种现象叫做欠拟合(underfitting)

简单来说,如果模型不适当,就会出现偏差。举个例子:如果对象是按颜色和形状分类的,但模型只能按颜色来区分对象和将对象分类(模型过度简化),因而一直会错误地分类对象。


方差:精度和过拟合

在训练模型时,通常使用来自较大训练集的有限数量样本。如果利用随机选择的数据子集反复训练模型,可以预料它的预测结果会因提供给它的具体样本而异。在这里,方差(variance)用来测量预测结果对于任何给定的测试样本会出现多大的变化。

出现方差是正常的,但方差过高表明模型无法将其预测结果泛化到更多的数据。对训练集高度敏感也称为过拟合(overfitting),而且通常出现在模型过于复杂或我们没有足够的数据支持它时。

通常,可以利用更多数据进行训练,以降低模型预测结果的方差并提高精度。如果没有更多的数据可以用于训练,还可以通过限制模型的复杂度来降低方差。


学习曲线与模型复杂度

学习曲线可以让我们通过数据点来了解模型表现的好坏。

from sklearn.learning_curve import learning_curve # sklearn 0.17
from sklearn.model_selection import learning_curve # sklearn 0.18
learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
这里estimator是我们正在用来预测的模型,例如它可以是GaussianNB(),X和y是特征和目标。cv是交叉验证生成器,例如KFold(),'n_jobs'是平行运算的参数,train_sizes是多少数量的训练数据用来生成曲线。

改进模型的有效性关键在于通过找出正确的模型复杂度来找到最大限度降低偏差和方差的最有效点。当然,数据越多,模型随着时间推移会变得越好。

你可能感兴趣的:(机器学习)