- 激光光束质量M²因子测量仿真与修正算法研究
pk_xz123456
算法大数据python算法人工智能大数据
激光光束质量M²因子测量仿真与修正算法研究摘要本文基于激光光束传输理论和CCD测量技术,提出了一种针对截断光斑的修正算法,并通过Python仿真实现了激光光束质量M²因子的精确测量。研究内容包括:(1)建立激光通过透镜后的传输模型;(2)模拟CCD在不同位置采集的光斑图像;(3)开发基于能量守恒的截断光斑修正算法;(4)对比分析修正前后M²因子计算结果的差异。仿真结果表明,所提出的修正算法能有效提
- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- 机器人工程专业毕设选题推荐
文章目录1前言2如何选题3选题方向2.1嵌入式开发方向2.2物联网方向2.3移动通信方向2.4人工智能方向2.5算法研究方向2.6移动应用开发方向2.7网络通信方向3.4学长作品展示4最后1前言近期不少学弟学妹询问学长关于电子信息工程专业相关的毕设选题,学长特意写下这篇文章以作回应!以下是学长亲手整理的物联网相关的毕业设计选题,都是经过学长精心审核的题目,适合作为毕设,难度不高,工作量达标,对毕设
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- 搜索领域知识图谱的知识推理算法研究
搜索引擎技术
知识图谱算法人工智能ai
搜索领域知识图谱的知识推理算法研究关键词:知识图谱、知识推理、搜索算法、图神经网络、路径推理、规则推理、表示学习摘要:本文深入探讨搜索领域中知识图谱的知识推理算法。我们将从知识图谱的基本概念出发,分析不同类型的知识推理算法原理,包括基于规则的推理、基于表示的推理和基于路径的推理。通过实际案例和代码实现,展示这些算法如何提升搜索效果,最后讨论该领域的未来发展趋势和挑战。背景介绍目的和范围本文旨在系统
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 室内定位论文集-20241011期
程序员石磊
室内定位论文集基于深度学习的室内定位室内定位
QLOC:基于量子指纹的大规模定位实用算法研究问题当前的定位技术在处理涉及大量设备的大型部署时往往存在不准确和低效的问题。方法该研究引入了一种新颖的量子指纹基算法,称为QLOC,旨在为广泛的室内环境提供精确的定位服务,并尽量减少计算需求。创新点设计了一种高效的量子算法,在设备数量增加的情况下能很好地扩展。通过严格测试与真实世界场景和基准对比验证了所提方案的有效性。结论QLOC代表了一个重要的进展,
- 北斗导航 | 基于改进小龙虾优化算法的GPS接收机自主完好性监测算法研究
北斗猿
卫星导航算法matlab
详细介绍基于改进小龙虾优化算法(COA)的GPS接收机自主完好性监测算法的原理、公式和MATLAB实现。主要内容如下:RAIM基础原理与问题定义:介绍最小二乘残差法的数学模型,包括伪距观测方程、故障检测统计量和故障识别方法。改进小龙虾优化算法设计:详细说明COA的三种行为模式及其数学表述,以及三种改进策略(非线性温度更新、自适应视野调整、混合变异机制)。融合改进COA的RAIM算法:阐述种群初始化
- python深度学习毕业设计项目选题汇总
kooerr
毕业设计python毕设
文章目录1前言1.1选题注意事项1.1.1难度怎么把控?1.1.2题目名称怎么取?1.2开题选题推荐1.2.1起因1.2.2核心-如何避坑(重中之重)1.2.3怎么办呢?2选题概览3项目概览题目1:图像隐写算法研究与实现题目2:Django股价预测可视化系统题目3:大数据招聘数据可视化系统题目4:深度学习车道线检测题目5:深度学习交通车流量计数系统题目6:深度学习遮挡下的人脸识别题目7:深度学习照
- 探索算法秘境:量子随机游走算法及其在图论问题中的创新应用
目录编辑一、量子随机游走算法的起源与原理二、量子随机游走算法在图论问题中的创新应用三、量子随机游走算法的优势与挑战四、结语在算法研究的浩瀚星空中,总有一些领域如同遥远星系,闪烁着神秘而诱人的光芒。今天,我们将一同深入这片算法秘境,探索一个相对偏僻但极具潜力的算法——量子随机游走算法(QuantumRandomWalk,QRW),并揭示它在图论问题中的创新应用。一、量子随机游走算法的起源与原理量子随
- AI人工智能在自动驾驶的路径规划算法研究
AI大模型应用工坊
AI大模型开发实战人工智能自动驾驶算法ai
AI人工智能在自动驾驶的路径规划算法研究关键词:AI人工智能、自动驾驶、路径规划算法、环境感知、智能决策摘要:本文聚焦于AI人工智能在自动驾驶路径规划算法方面的研究。首先介绍了研究的背景和意义,阐述了自动驾驶路径规划的基本概念和重要性。接着详细探讨了核心概念,包括路径规划的原理、架构以及与其他自动驾驶模块的联系,并通过Mermaid流程图进行直观展示。对多种核心路径规划算法的原理进行了深入剖析,使
- 李晓梅老师在并行算法领域太厉害了,为什么没有评院士?
好好学习啊天天向上
算法
李晓梅老师是我国数值并行算法研究的开拓者之一。她主持了银河-I、银河-II巨型计算机应用软件的研制与开发,首次在我国建立了“并行线性代数库”、“并行特征值特征向量库”、“并行快速变换库”,研制了我国第一个“中期数值天气预报多任务并行软件系统”,在我国首次建立起向量地震数据处理软件系统等。她为银河-I/银河-II超级计算机研制和数值天气预报、核模拟、石油勘探等领域的向量化应用软件研制,及我国并行计算
- 文生图模型的dev、fast、full版本的区别
Liudef06小白
AI作画
在文生图模型领域,StableDiffusion的dev、fast、full版本分别对应不同的技术定位和应用场景,其核心区别体现在功能全面性、运行效率及硬件适配性上。以下是具体对比分析:1.Dev版本(开发者版)核心定位:面向算法研究者与深度定制开发者,强调灵活性与可扩展性。技术特性:开源架构:提供完整的模型代码库(如基于PyTorch的实现),允许用户修改网络结构、调整超参数(如学习率、扩散步数
- 经典算法研究(1):SIFT算法1
乔qiao
图像处理
作者:qxl邮箱:
[email protected]系列文章链接一、经典算法研究(1):SIFT算法1二、经典算法研究(1):SIFT算法2三、文章目录系列文章链接前言一、Sift算法原理介绍1.0基础概念高斯金字塔八度为什么要构建高斯金字塔?高斯金字塔构建步骤如何描述尺度空间?构建差分高斯金字塔尺度空间的连续性下一个八度的第一幅图像如何确定前言学习sift算法记录一、Sift算法原理介绍尺度不变
- 深度强化学习实战:玩转 Atari 游戏
谷雪_658
游戏python开发语言
在人工智能技术蓬勃发展的当下,深度强化学习凭借其在复杂决策场景中的出色表现,成为众多研究人员和开发者关注的焦点。Atari游戏系列以其丰富的游戏环境和多样化的任务设定,成为深度强化学习算法研究与实践的经典测试平台。通过在Atari游戏中应用深度强化学习算法,不仅能够深入理解强化学习的核心原理,还能探索其在实际场景中的应用潜力。本文将带领读者从零开始,通过实战操作,掌握使用深度强化学习算法玩转Ata
- 乾元通渠道商中标西藏2024年应急装备采购配置项目
爱研究的小梁
智能路由器信息与通信
近日,乾元通渠道商中标西藏2024年应急装备采购配置项目(应急通信车替换升级设备及多链路聚合设备),乾元通作为设备厂家,为项目提供通信指挥类装备(多链路聚合设备)QYT-X1。青岛乾元通数码科技有限公司作为国家应急产业企业,深耕于数据调度算法研究,参与了多项国家及省部级应急救灾通讯保障项目,致力于解决在地震灾害、塌方事故等自然灾害现场,快速组建可靠网络需求。设备采用多链路聚合技术,具有4G/5G、
- 科研学习 论文解读——面向电商内容安全风险管控的协同过滤推荐算法研究(1)
2401_84296945
学习安全推荐算法
面向电商内容安全风险管控的协同过滤推荐算法研究-中国知网(cnki.net)")面向电商内容安全风险管控的协同过滤推荐算法研究*摘要:**[目的/意义]随着电商平台商家入驻要求降低以及商品上线审核流程简化,内容安全风险问题成为协同过滤推荐算法伦理审查的核心问题之一。[方法/过程]本文将内容安全风险问题纳入用户协同过滤推荐算法的优化过程,提出一种改进的推荐算法。首先,采用混合研究方法对内容安全风险商
- AIGC提示(prompt)飞升方法:走向专家之路
herosunly
大模型AIGCprompt专家之路
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了AIGC提示(prompt)飞升方法:走向专家之路,希望对学习大语言模型
- 最新电子科学与技术专业毕设选题题目推荐
Mdc_stdio
单片机
文章目录1前言2如何选题3选题方向2.1嵌入式开发方向2.2物联网方向2.3移动通信方向2.4人工智能方向2.5算法研究方向2.6移动应用开发方向2.7网络通信方向3.4学长作品展示4最后1前言近期不少学弟学妹询问学长关于电子信息工程专业相关的毕设选题,学长特意写下这篇文章以作回应!以下是学长亲手整理的物联网相关的毕业设计选题,都是经过学长精心审核的题目,适合作为毕设,难度不高,工作量达标,对毕设
- 目标检测YOLO实战应用案例100讲-基于改进YOLO v7的智能振动分拣系统开发
林聪木
目标检测YOLO目标跟踪
目录前言课题国内外研究现状物料分拣研究现状目标检测算法研究现状振动视觉分拣系统的总体设计2.1振动盘视觉分拣系统的总体设计方案2.2振动盘视觉分拣系统的硬件选型2.2.1振动盘的选型2.2.2相机系统2.2.3运动控制器选型2.3振动盘视觉分拣系统的软件方案设计2.3.1振动盘视觉分拣系统软件开发需求分析2.3.2振动盘视觉分拣系统软件环境基于YOLOv7的模型改进3.1YOLOv7算法原理和网络
- 基于 Q-learning 的城市场景无人机三维路径规划算法研究,可以自定义地图,提供完整MATLAB代码
IT猿手
Qlearning无人机路径规划MATLAB无人机算法matlab无人机路径规划强化学习深度学习qlearning
一、引言随着无人机技术的不断发展,其在城市环境中的应用越来越广泛,如物流配送、航拍测绘、交通监控等。然而,城市场景具有复杂的建筑布局、密集的障碍物以及多变的飞行环境,给无人机的路径规划带来了巨大的挑战。传统的路径规划算法在三维复杂空间中往往难以满足实时性和最优性的要求。因此,研究一种有效的无人机三维路径规划算法具有重要的现实意义。Q-learning算法作为一种强化学习方法,能够通过与环境的交互学
- 基于Transformer的算力供需动态平衡算法研究与实践
九章云极AladdinEdu
transformer算法深度学习人工智能gpu算力架构智能电视
引言:算力供需失衡的困境与机遇随着大模型、AIGC等技术的爆发式发展,全球AI算力需求呈现指数级增长。OpenAI数据显示,2012至2020年间,训练AI模型所需的算力增长了30万倍,而传统算力调度系统仍停留在静态分配阶段。本文提出一种基于Transformer架构的算力需求预测模型,通过动态感知-预测-调度机制,实现算力资源的智能化供需平衡,为构建新一代AI算力基础设施提供新思路。一、现有方法
- 【创新未发表】Matlab实现飞蛾扑火优化算法MFO-Kmean-Transformer-LSTM组合状态识别算法研究
天天Matlab代码科研顾问
matlab算法transformer
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍一、引言随着工业自动化和智能制造的飞速发展,对工业设备状态监测与故障诊断的需求日益迫切。传统的监测方法往往依赖于人工经验,效率低下且难以应对复杂多变的工业环境。近年来,基于数
- 下载URL包含Signature和OSSAccessKeyId的实战代码
herosunly
Python爬虫实战教程爬虫python下载文件signature实战代码
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 今天给大家带来的文章是:下载URL包含Signature和OSSAccessKeyId
- 基于机器学习的舆情分析算法研究
赵谨言
论文经验分享毕业设计
标题:基于机器学习的舆情分析算法研究内容:1.摘要随着互联网的飞速发展,舆情信息呈现爆炸式增长,如何快速准确地分析舆情成为重要课题。本文旨在研究基于机器学习的舆情分析算法,以提高舆情分析的效率和准确性。方法上,收集了近10万条社交媒体的舆情文本数据,利用多种机器学习算法如支持向量机、朴素贝叶斯、决策树等进行训练和优化。结果表明,经过优化的支持向量机算法在舆情分类的准确率上达到了85%以上,明显高于
- 基于深度学习的人脸属性识别算法研究
赵谨言
论文经验分享毕业设计
标题:基于深度学习的人脸属性识别算法研究内容:1.摘要随着人工智能技术的快速发展,人脸属性识别在安防监控、人机交互等领域具有重要的应用价值。本文旨在研究基于深度学习的人脸属性识别算法,以提高识别的准确性和效率。通过构建深度卷积神经网络模型,使用大规模的人脸数据集进行训练和优化。实验结果表明,所提出的算法在多个公开人脸属性数据集上取得了较好的识别效果,平均识别准确率达到了85%以上。研究表明,基于深
- 目标检测YOLO实战应用案例100讲- 无人机平台下露天目标检测与计数
林聪木
目标检测YOLO无人机
目录知识储备基于YOLOv8改进的无人机露天目标检测与计数一、环境配置与依赖安装二、核心代码实现(带详细注释)1.改进YOLOv8模型定义(添加注意力机制)2.无人机视角数据增强(drone_augment.py)3.多目标跟踪与计数(tracking_counter.py)4.完整推理流程(main.py)三、关键技术优化点四、数据集配置示例前言目标检测算法研究现状分析基于检测方法的目标计数研究
- 数据挖掘实验:k_means、k_medoids聚类算法的实现(Python)
一只西绿柿
课程实验数据挖掘聚类算法python
目录前言一、k-means算法二、k-medoids算法三、实验结果展示总结前言本文是基于划分的聚类算法研究与实现,实现了k均值及k中心点聚类算法,并在数据集上完成测试。用户输入k的值,可对数据集中的数据进行聚类。一、k-means算法k-means算法使用簇的均值点作为簇的形心。首先在数据集中随机选择k个点作为k个簇的初始均值,对于数据集中的每个点,根据欧式距离将其分配至距离最近的簇。然后k均值
- 【影响因子高】【数据驱动】自组织方向感知数据分区算法研究(Matlab代码实现)
然哥依旧
算法matlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1