- # 【GEE基础及工具)(一)】工欲善其事,必先利其器:借助Open Earth Engine实现影像高效处理及批量任务执行
遥感AI实战
GEE基础教程遥感GEE地理信息信息可视化sentinel
在遥感数据分析与处理工作中,海量影像数据的预处理(如去云、裁剪)和分析(如均值计算)是支撑后续研究的核心环节。而Sentinel-2影像作为常用的遥感数据源,常因云层遮挡、数据量大等问题增加处理难度。同时,在使用GoogleEarthEngine(GEE)处理数据时,“批量导出任务需手动逐个启动”的问题也会显著降低效率。本文将从“工具优化”和“数据处理”两个维度展开,详细介绍如何通过GEE完成Se
- Python, Go, Rust 开发全球海岛坐标定位APP
Geeker-2025
pythongolangrust
以下是一个基于**Python、Go和Rust**协同开发的全球海岛坐标定位APP设计方案,结合三者的优势实现高精度地理计算、实时数据处理和跨平台部署:---###系统架构```mermaidgraphTDA[卫星遥感数据源]-->B(Python数据处理)B-->C{Rust地理引擎}C-->D[Go微服务集群]D-->E[移动端/Web端]E-->F[用户终端]```---###模块分工及技术
- AI+Python赋能!长时序植被遥感动态分析全攻略:从物候提取到生态评估
梦想的初衷~
土壤植被遥感人工智能遥感植被土壤
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用
科研的力量
人工智能ChatGPTchatgpt人工智能
课程将最新的人工智能技术与实际的遥感应用相结合,提供不仅是理论上的,而且是适用和可靠的工具和方法。无论你是经验丰富的研究人员还是好奇的从业者,本课程都将为分析和解释遥感数据开辟新的、有效的方法,使你的工作更具影响力和前沿性。遥感技术主要通过卫星和飞机从远处观察和测量我们的环境,是理解和监测地球物理、化学和生物系统的基石。ChatGPT是由OpenAI开发的最先进的语言模型,在理解和生成人类语言方面
- 遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
科研的力量
生态遥感双碳chatgptGEE卫星遥感数据
以EarthEngine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,G
- Sentinel-5P遥感数据下载及预处理教程【20250105】
八秒记忆的老男孩
遥感数据预处理遥感反演Sentinel-5P预处理遥感数据
Sentinel-5P是欧空局(EuropeSpaceAgency,ESA)于2017年10月13日发射的一颗全球大气污染监测卫星。卫星搭载了对流层观测仪(TroposphericMonitoringInstrument,TROPOMI),可以有效的观测全球各地大气中痕量气体组分,包括NO2、O3、SO2、HCHO、CH4和CO等重要的与人类活动密切相关的指标,加强了对气溶胶和云的观测。⛄Sent
- 【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?
985小水博一枚呀
深度学习学习笔记深度学习学习笔记人工智能
【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?文章目录【深度学习|学习笔记】预训练(Pretraining)的作用有哪些?前言✅一、提高模型性能✅二、降低训练成本✅三、迁移学习能力强✅四、模型结构验证过,可靠性高✅五、促进多模态和复杂任务发展总结如何将自己的遥感数据(输入波段为17)用作DenseNet121
- EasyFeature:智能要素提取的遥感技术创新
智绘空天
人工智能深度学习机器学习图像处理
引言传统遥感解译受制于海量数据与地物复杂性,精度与效率常陷入瓶颈。EasyFeature软件正是应对这一领域痛点的先锋解决方案,其核心“要素智能提取”特性,聚焦于云覆盖、道路、居民地/建筑物、林地、水系等关键专题信息的深度挖掘,彻底改变了工程化影像处理流程。该软件依托强大的核心技术壁垒与智能算法,不仅有效提升了信息提取精度,更将遥感解译的效率提升至全新高度,为遥感数据分析领域注入自动化能量。核心技
- GIS基础应用技术从0开始
前端小白从0开始
html5vue.js前端GISOpenLayers
一、GIS数据构成1、地图数据:包括地形图,交通图,水系图等基础地理信息,如高德路网图,中国地形图等。图1-高德卫星图+路网2、遥感数据:通过卫星,无人机等遥感设备获取的影响数据。如天地图和地块管理系统中展示的高清地图图2-卫星遥感影像与无人机影像3、属性数据:描述地理实体特征的文字和数字信息。例如一个地块的类型和面积。图3-地理元素与其属性表4、元数据:描述地理数据的内容、质量、来源等信息的数据
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- DeepSeek 赋能卫星遥感:AI 驱动数据分析新范式
奔跑吧邓邓子
DeepSeek实战DeepSeek卫星遥感数据分析人工智能应用
目录一、引言二、DeepSeek技术解析2.1DeepSeek简介2.2核心能力与优势三、卫星遥感数据分析概述3.1数据获取与特点3.2传统分析方法及挑战四、DeepSeek在卫星遥感数据分析中的应用场景4.1土地利用与覆盖监测4.2自然资源调查4.3灾害监测与预警4.4生态环境评估五、应用案例剖析5.1具体项目背景介绍5.2DeepSeek应用过程与成果展示5.3与传统方法对比优势六、面临的挑战
- 【智慧农业 × 国产大模型】智能病虫害识别与作物产量预测工程实践全流程解析
观熵
国产大模型部署实战全流程指南大数据人工智能国产大模型
【智慧农业×国产大模型】智能病虫害识别与作物产量预测工程实践全流程解析关键词国产大模型、农业AI、病虫害识别、作物产量预测、图像分类、多模态融合、时序建模、遥感数据、边缘计算、农业大数据、模型轻量化、精细化种植摘要随着农业智能化进程加速,传统依赖人力经验的病虫害识别与作物产量评估方式,已无法满足大规模、精细化生产需求。本文基于国产大模型的实际应用案例,深入解析如何构建面向田间场景的“病虫害识别+产
- 珈和科技荣登《湖北日报》头版,碧空“慧眼”让业者心中有“数”
珈和info
科技
2016年以来每年的4月24日设定为“中国航天日”,今年我们一起在家门口(今年的主场活动将在湖北武汉举办)以“极目楚天,共襄星汉”为主题迎来了第九个“中国航天日”。回望珈和科技创业十年路,始终与国家航天事业保持步调一致、快速前进,并连续6年荣获“中国商业航天30强”称号。作为2023年度“中国商业航天30强”中湖北省唯二上榜的企业,珈和科技在商业航天领域离下游产业链最近的一环——卫星遥感数据服务场
- GEE案例:基于Google Earth Engine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区)
此星光明
GEE案例分析人工智能大数据rusle土壤侵蚀模型算法gee
基于GoogleEarthEngine的RUSLE土壤侵蚀模型实现与分析(恒河缓冲区案例研究|2024-2025年度数据)1.研究背景与数据准备本研究利用修正通用土壤流失方程(RUSLE)评估恒河支流缓冲区的土壤侵蚀状况。核心数据集包括:气象数据:CHIRPS日降水数据集(计算R因子)地形数据:SRTM数字高程模型(提取LS因子)遥感数据:哨兵2号(计算C因子)、MODIS土地覆盖(提取P因子)土
- 轻松发TGRS!遥感结合小目标检测 模型达到94.2%mAP
Ai多利
目标检测人工智能计算机视觉遥感
2025深度学习发论文&模型涨点之——遥感+小目标检测遥感在军事侦察、资源勘探、环境监测等领域的应用日益广泛。然而,如何从海量的遥感数据中准确、高效地检测出小目标,已成为当前遥感图像处理领域的关键挑战之一。小目标在遥感图像中往往具有尺寸微小、背景复杂、对比度低等特点,这使得传统的检测方法难以满足实际应用的需求。近年来,随着深度学习技术的兴起,基于卷积神经网络(CNN)的检测算法为遥感小目标检测带来
- 【卫星遥感影像】国产遥感影像分类技术应用研究进展综述_论文推荐
兰小静
卫星遥感论文推荐国产遥感影像分类应用研究进展
影像分类是遥感影像信息提取中的基本问题之一和遥感影像应用的关键,为我国掌握本土信息资源自主权、满足国家的紧迫需求具有重大战略意义。本文将进行这篇遥感影像分类的论文推荐。1.论文引用[1]胡杰,张莹,谢仕义.国产遥感影像分类技术应用研究进展综述[J].计算机工程与应用,2021,57(03):1-13.2.国产遥感数据概述环境系列遥感卫星:是我国专门用于环境和灾害监测的对地观测卫星系统,主要由2颗光
- 最新AI赋能Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估
jwwkyjspt
地学植物遥感人工智能遥感植物农业
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 中国地区土地覆盖综合数据集
做科研的周师兄
数据集分享大数据
LandcoverproductsofChina时间分辨率年共享方式开放获取数据大小434.73MB数据时间范围元数据更新时间2020-07-17数据集摘要中国土地覆盖数据集包括5种产品:1)glc2000_lucc_1km_China.asc,由GLC2000项目开发的基于SPOT4遥感数据的全球土地覆盖数据中国子集,数据名称为GLC2000.GLC2000中国区域土地覆盖数据由全球覆盖数据直接
- 遥感大数据处理基础与AI大模型交互
小艳加油
人工智能GEEchatgpt遥感
公众号,【科研的力量】随着航空、航天、近地空间等多个遥感平台的不断发展,近年来遥感技术突飞猛进。由此,遥感数据的空间、时间、光谱分辨率不断提高,数据量也大幅增长,使其越来越具有大数据特征。对于相关研究而言,遥感大数据的出现为其提供了前所未有的机遇,但同时也提出了巨大的挑战。传统的工作站和服务器已经无法满足大区域、多尺度海量遥感数据处理的需要。为解决这一问题,国内外涌现了许多全球尺度地球科学数据(尤
- AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
xiao5kou4chang6kai4
生态遥感深度学习人工智能python机器学习遥感反演植被参数生态环境
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- 【大模型ChatGPT +DeepSeeK+python】最新AI赋能Python长时序植被遥感动态分析、物候提取、时空变异归因及RSEI生态评估
赵钰老师
遥感DeepSeekpython人工智能chatgpt数据分析pythonarcgis
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- 第36讲:作物生长预测中的时间序列建模(LSTM等)
Chh0715
lstm人工智能rnnr语言python
目录为什么用时间序列模型来预测作物生长?⛓️什么是LSTM?示例案例:预测小麦NDVI变化趋势1️⃣模拟数据构建(或使用真实遥感数据)2️⃣构建LSTM所需数据格式3️⃣构建并训练LSTM模型4️⃣模型预测与效果可视化除了LSTM,还有哪些方法?农学中的潜在应用场景✅小结在精准农业快速发展的今天,如何准确预测作物的生长状态,已成为提升农业决策效率的重要课题。特别是面对多变的气候、不同地块的管理方式
- 遥感大模型
大奎帝国
笔记
遥感大模型简介单一模态简介随着高光谱遥感技术的迅猛发展,光谱成像数据呈爆炸式增长,现有的分析方法和解译手段已不能满足全要素精细地物感知的需求,人工智能大模型的出现,为解决高光谱遥感数据信息充分提取与挖掘、实现“吃干榨净”提供了技术保障。斯坦福大学的研究定义基础模型(FM)为:指在广泛数据上训练的模型(通常使用大规模的自监督方法),可以用于广泛的下游任务(通过微调等方法)。GPT-4等是目前比较流行
- 第十九讲 XGBoost 二分类模型案例(遥感数据识别玉米与小麦地块)
Chh0715
数据挖掘人工智能r语言机器学习算法分类
案例场景:遥感数据识别玉米与小麦地块你是一名农业遥感研究者,希望根据遥感指数(如NDVI、EVI、土壤亮度等)对农田进行分类,判断地块是玉米还是小麦。步骤1:模拟数据生成我们使用dplyr和MASS生成500个样本数据,包含4个遥感特征变量与1个类别标签(玉米=1,小麦=0)。#加载所需包library(dplyr)library(ggplot2)library(xgboost)library(c
- 根据ndvi提取非水体_无人机多光谱遥感系统在河道水体富养化监测中的应用
小小黑飞飞
根据ndvi提取非水体
摘要:伴随着无人机平台的不断进步,遥感传感器日益丰富,可见光及近红外波段的高分辨率影像逐步普及,推动无人机低空遥感由侧重几何定位的测绘应用向以决策支持为目的的专题信息提取方向转变。运用分析遥感数据的数学和物理方法,开展定量遥感方面的研究,进一步将基础影像数据转化为高级专题产品,正在成为一种新的趋势。本文介绍一种面向水体污染物监测的无人机多光谱应用方法。水体富营养化防治是水污染治理中最为复杂和困难的
- CNN+Transformer实现遥感影像建筑物分割
hanfeng5268
深度学习cnntransformer人工智能
文章目录一、局部细节与全局上下文的协同建模1.CNN的局部感知优势空间局部性:平移等变性:层次化特征提取:2.Transformer的全局关联优势长距离依赖建模:动态权重分配:尺度不变性:二、多尺度特征融合能力1.CNN的多级特征金字塔2.Transformer的多头注意力机制三、对遥感数据特性的适配优化1.高分辨率影像处理局部计算优化:滑动窗口策略:2.复杂场景鲁棒性光照变化:类内差异:小目标检
- 当气象水文遇见R语言——破解时空数据的“达芬奇密码“
Yolo566Q
r语言开发语言
在气象水文科学领域,数据从来不只是简单的数字阵列。台风路径的时空跳跃、流域径流的非线性涨落、气候要素的混沌演变,这些充满不确定性的自然现象转化为数据时,呈现出多维时空交织的复杂图景。研究人员常常要在TB级遥感数据中捕捉毫米级降水变化,从百年尺度的气候序列里识别突变拐点,在非结构化的观测数据中重构三维大气场——这些看似不可能完成的任务,正是现代气象水文研究的日常挑战。传统的数据处理工具在这场博弈中频
- CASA模型-估算陆地生态系统植被净初级生产力NPP的经典模型(相关遥感数据、MODIS NDVI遥感产品预处理、气象数据预处理与空间插值、区域制图)
KY_chenzhao
人工智能大数据机器学习matlab
CASA模型(Carnegie-Ames-StanfordApproach)是一个基于光合作用和呼吸作用过程的生态系统生产力模型。在实际应用中,气象数据是CASA模型的关键输入之一,用于模拟植被的光合作用和呼吸作用。本文将介绍如何结合气象数据实现CASA模型,并提供一个实际案例CASA模型需要的气象数据主要包括:辐射(光合有效辐射PAR)温度(影响酶活性和呼吸作用)降水(影响土壤水分和植被生长)这
- 【读论文】多/高光谱图像和 LiDAR 数据联合分类方法研究(2020)
氧艺
读论文分类机器学习
【读论文】多/高光谱图像和LiDAR数据联合分类方法研究(2020)王青旺DOI文章目录摘要:关键词:结论:1.该论文研究了什么?2.创新点在哪?3.研究方法是什么?4.得到的结论是什么?摘要:地物分类识别需求的不断升级,对遥感场景解译提出了新要求:更高的空间二维解译精度和遥感场景空间三维解译。利用多源遥感数据和新型遥感技术是满足不断升级的需求的有效手段。多/高光谱成像和单波段激光雷(LightD
- Xarray的维度魔法
Python与遥感
python
前言遥感数据通常是多维的,涉及到时空四维数据(经度、纬度、时间、波段)。在这种复杂的数据结构下,如何高效、清晰地进行分析成为一个难题。今天,我们将介绍xarray库,它是处理这类多维数据的强大工具。xarray不仅能让你的代码更加简洁直观,还能使复杂的数据操作变得优雅。接下来,我们将一起探讨如何使用xarray应对遥感数据分析中的各种挑战。一、为什么选择Xarray?传统numpy数组的痛点:维度
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc