- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- Hive 事务表(ACID)问题梳理
文章目录问题描述分析原因什么是事务表概念事务表和普通内部表的区别相关配置事务表的适用场景注意事项设计原理与实现文件管理格式参考博客问题描述工作中需要使用pyspark读取Hive中的数据,但是发现可以获取metastore,外部表的数据可以读取,内部表数据有些表报错信息是:AnalysisException:org.apache.hadoop.hive.ql.metadata.HiveExcept
- Python与大数据:Spark和PySpark实战教程
天天进步2015
python大数据pythonspark
引言在大数据时代,数据处理和分析能力成为核心竞争力。ApacheSpark作为新一代大数据计算引擎,以其高性能、易用性和强大的生态系统,成为数据工程师和分析师的首选工具。而PySpark作为Spark的Python接口,让Python开发者能够轻松驾驭大规模数据处理。本教程将带你系统了解Spark与PySpark的核心原理、环境搭建、典型应用场景及实战案例,助你快速上手大数据分析。目录Spark简
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- pyspark底层浅析
lo_single
Sparksparkpython
pyspark底层浅析pyspark简介pyspark是Spark官方提供的API接口,同时pyspark也是Spark中的一个程序。在terminal中输入pyspark指令,可以打开python的shell,同时其中默认初始化了SparkConf和SparkContext在编写Spark应用的.py文件时,可以通过importpyspark引入该模块,并通过SparkConf对Spark的启动
- PySpark 使用pyarrow指定版本
SLUMBER_PARTY_
pyspark
背景说明在PySpark3.1.3环境中,当需要使用与集群环境不同版本的PyArrow(如1.0.0版本)时,可以通过以下方法实现,而无需更改集群环境配置完整操作说明去pyarrow·PyPI下载对应版本的whl文件后缀whl直接改成zip解压后有两个文件夹,分别是pyarrow和pyarrow-1.0.0.dist-info直接把那两个文件夹打包成pyarrow.zip因为pyarrow里不是单
- Spark入门指南:大数据处理的第一个Hello World程序
AI天才研究院
ChatGPTAI大模型应用入门实战与进阶spark大数据分布式ai
Spark入门指南:大数据处理的第一个HelloWorld程序关键词:Spark、大数据处理、RDD、WordCount、PySpark、分布式计算、HelloWorld程序摘要:本文以经典的WordCount程序为切入点,系统讲解ApacheSpark的核心概念、开发流程与实战技巧。通过从环境搭建到代码实现的全流程解析,帮助大数据初学者快速掌握Spark的基础操作,理解分布式计算的核心逻辑。文章
- pyspark==windows单机搭建
一个java开发
数据分析spark
下载安装JDK17,配置JAVA_HOME下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOMEIndexof/hadoop/common/hadoop-3.3.5GitHub-cdarlint/winutils:winutils.exehadoop.dllandhdfs.dllbinariesforhadoopwindows下载spark配置SPARK_HOME安装py
- 大数据领域的数据工程:从理论到实践
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据ai
大数据领域的数据工程:从理论到实践关键词:数据工程、大数据处理、ETL/ELT、数据湖、数据仓库、数据治理、云计算摘要:本文系统解析大数据领域的数据工程体系,从理论架构到实战落地展开深度探讨。首先构建数据工程核心概念框架,解析数据集成、存储、处理、治理的技术原理;其次通过Python和PySpark代码实现数据清洗、分布式处理等关键算法;结合真实项目案例演示数据管道搭建与优化;最后分析金融、电商等
- pyspark依赖环境设置
pypspark异常py49-protocol.Py433avaError:Anerroroccurredwhilecalling0117.sql.org.apache.spark.SparkException:Jobabortedduetostagefailure:Task®instage0.0failed4times,mostrecentfailure:Losttask0.3instage0.
- 使用 PySpark 从 Kafka 读取数据流并处理为表
Bug Spray
kafkalinq分布式
使用PySpark从Kafka读取数据流并处理为表下面是一个完整的指南,展示如何通过PySpark从Kafka消费数据流,并将其处理为可以执行SQL查询的表。1.环境准备确保已安装:ApacheSpark(包含SparkSQL和SparkStreaming)KafkaPySpark对应的Kafka连接器(通常已包含在Spark发行版中)2.完整代码示例frompyspark.sqlimportSp
- Hugging Face + Spark:打造高效的 NLP 大数据处理引擎(一)
在自然语言处理(NLP)领域,HuggingFace是不可或缺的处理库,而Spark则是大数据处理的必备工具。将两者的优势结合起来,可以实现高效的NLP大数据处理。以下是结合HuggingFace和Spark的两种方法,基于Spark&PySpark3.3.1版本进行探索。方法一:升级Spark版本至3.4及以上如果你愿意升级Spark版本到3.4或更高版本,那么结合HuggingFace和Spa
- linux下载pyspark并修改默认python版本
yishan_3
chrome前端
使用deadsnakesPPA(适用于旧版Ubuntu)如果官方仓库没有Python3.8,可通过第三方PPA安装。步骤1:添加PPA仓库bash复制下载sudoadd-apt-repositoryppa:deadsnakes/ppasudoaptupdate步骤2:安装Python3.8bash复制下载sudoaptinstallpython3.8设置Python3.8为默认版本(可选)如果需要
- 关于Spark Shell的使用
2301_78557870
spark大数据分布式
Spark带有交互式的Shell,可在SparkShell中直接编写Spark任务,然后提交到集群与分布式数据进行交互,并且可以立即查看输出结果。SparkShell提供了一种学习SparkAPI的简单方式,可以使用Scala或Python语言进行程序的编写。一、SparkShell简介SparkShell是Spark提供的交互式命令行工具,支持Scala(默认)和Python(PySparkSh
- RDD的自定义分区器-案例
依年南台
大数据
以下是一个更具体的RDD自定义分区器案例,展示如何根据业务需求实现自定义分区逻辑。案例:按用户地区进行数据分区假设我们有一个电商交易数据集,包含user_id(用户ID)和region(地区)字段。我们希望根据用户所在地区将数据分区,以便后续对每个地区的数据进行独立分析。实现步骤定义地区到分区的映射规则实现自定义分区器应用分区器并验证结果代码实现python运行frompysparkimportS
- 使用Pyspark读取CSV文件并将数据写入数据库(大数据)
雨中徜徉的思绪漫溢
数据库大数据
使用Pyspark读取CSV文件并将数据写入数据库(大数据)近年来,随着大数据技术的快速发展,大数据处理和分析已经成为许多企业和组织的重要任务之一。Pyspark作为ApacheSpark的PythonAPI,为我们提供了强大的工具来处理和分析大规模数据集。在本文中,我们将学习如何使用Pyspark读取CSV文件,并将数据写入数据库。首先,我们需要安装和配置Pyspark。请确保你已经安装了Jav
- Spark安装
姬激薄
spark
一、本地环境安装(单机模式)适合开发和测试,支持Windows、Linux、macOS。1.前置条件Java:Java8或更高版本(建议OpenJDK11+)。bash#检查Java版本java-versionPython(可选):PySpark需要Python3.6+。Scala(可选):若使用ScalaAPI,需安装Scala2.12/2.13。2.下载与安装下载Spark:从ApacheSp
- 【小贪】程序员必备:Shell、Git、Vim常用命令
贪钱算法还我头发
小小宝典gitvim编辑器shellsshlinux
近期致力于总结科研或者工作中用到的主要技术栈,从技术原理到常用语法,这次查缺补漏当作我的小百科。主要技术包括:✅数据库常用:MySQL,HiveSQL,SparkSQL✅大数据处理常用:Pyspark,Pandas⚪图像处理常用:OpenCV,matplotlib⚪机器学习常用:SciPy,Sklearn⚪深度学习常用:Pytorch,numpy⚪常用数据结构语法糖:itertools,colle
- pyspark on yarn 配置
强强0007
pysparkhadoop大数据分布式
1yarn模式出错pysparkonyarn在pycharm上执行出现以下问题:解决方案:在程序最前面添加如下程序importosos.environ["HADOOP_CONF_DIR"]="/opt/module/hadoop-3.1.3/etc/hadoop"2yarn模式配置2.1SparkSessionfrompyspark.sqlimportSparkSessionimportos
- RDD有哪几种创建方式
痕517
开发语言
RDD(弹性分布式数据集)有以下几种常见的创建方式:###从集合创建通过`parallelize()`方法将本地集合转换为RDD。这种方式适合在测试或处理小规模数据时使用,它能将本地的Python列表、Java数组等集合数据并行化到集群上。-**Python示例**:```pythonfrompysparkimportSparkContext#创建SparkContext对象sc=SparkCon
- scala连接mongodb_Spark教程(二)Spark连接MongoDB
weixin_39688035
scala连接mongodb
如何导入数据数据可能有各种格式,虽然常见的是HDFS,但是因为在Python爬虫中数据库用的比较多的是MongoDB,所以这里会重点说说如何用spark导入MongoDB中的数据。当然,首先你需要在自己电脑上安装spark环境,简单说下,在这里下载spark,同时需要配置好JAVA,Scala环境。这里建议使用Jupyternotebook,会比较方便,在环境变量中这样设置PYSPARK_DRIV
- 大数据毕业设计PySpark+Hadoop航班延误预测系统 航班可视化
QQ21503882
javaweb大数据课程设计hadoop
1.选题背景和意义(1)选题背景在旅行规划中,机票价格一直是旅客关注的重点。机票价格的波动不仅受季节、航线、航空公司等因素的影响,还受到市场供求关系、经济形势等因素的影响。因此,通过对机票价格进行预测分析,可以帮助旅客选择更合适的出行时间和机票购买策略,从而节省旅行成本。(2)意义提高乘客购票决策:基于Hadoop的飞机票价格预测能够提供乘客准确的价格预测信息,帮助他们选择合适的购票时间和最优的价
- Spark应用部署模式实例
qrh_yogurt
spark大数据分布式
Local模式新启动一个终端SparkSubmit#pyspark命令启动的进程,实际上就是启动了一个Spark应用程序SparkStandalone模式讲解:6321SecondaryNameNode#hadoop中HDFS第二数据存储节点,负责定期合并fsimage和editslog文件7475Jps6132DataNode#hadoop中HDFS的数据存储节点,负责存储实际的数据块,并响应来
- spark graphx自用学习笔记及pyspark项目实战(基于GraphX的航班飞行网图分析)
GDUT-orzzzzzz
学习笔记sparkpython大数据
这里写自定义目录标题0.前言1.概念1.1图计算的优势1.2图存储格式1.3GraphX存储模式1.4普通概念2.图的构建(待补充)2.1构建图的方法2.2构建图的过程3.图的操作4.算法5.实战5.1项目要求5.2环境5.3安装5.4代码5.5最终结果参考链接0.前言本篇博客自用,部分内容只包含概念,并且博主本身有一定spark和图论基础,部分模糊的地方,可自行查询。1.概念1.1图计算的优势基
- 在Azure Databricks中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
数据仓库pythonsparkazure云计算
在AzureDatabricks中使用PySpark实现缓慢变化维度(SCD)的三种核心类型,需结合SparkSQL和DataFrameAPI的特性,并利用DeltaLake的事务支持。以下是具体设计与实现步骤,以及测试用例:通过以下步骤,可在AzureDatabricks中高效实现SCD逻辑,确保数据历史可追溯且符合业务需求。类型1:覆盖旧值(OverwriteOldValue)设计要点直接更新
- 跨领域大数据抓取与融合:Python爬虫实战指南
Python爬虫项目
2025年爬虫实战项目大数据python爬虫人工智能开发语言easyui
目录引言跨领域大数据抓取与融合的背景与意义技术选型与工具介绍Python爬虫框架:Scrapy、BeautifulSoup、Selenium数据处理与存储:Pandas、NumPy、MongoDB数据融合与分析:PySpark、TensorFlow实战项目:跨领域数据抓取与融合项目概述数据抓取抓取电商数据抓取社交媒体数据抓取新闻数据数据清洗与预处理数据融合与分析代码实现与详细解析电商数据抓取代码社
- PySpark数据透视表操作指南
闯闯桑
大数据sparkpython
在PySpark中,可以使用pivot()方法实现类似Excel数据透视表的功能。以下是详细操作步骤和示例:1.基本语法df.groupBy([行维度列])\.pivot([列维度列])\.agg([聚合函数])\.fillna(0)#可选,填充空值2.示例数据假设有以下DataFrame(sales_df):+-------+----------+------+-------+|region|p
- 在AWS Glue中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
awsetlsql开发语言数据仓库
根据缓慢变化维度(SCD)的三种核心类型(类型1、类型2、类型3),以下是基于AWSGlue的实现设计、步骤及测试用例:一、AWSGlue实现SCD的设计与步骤1.SCD类型1(覆盖旧值)设计目标:直接更新目标表中的记录,不保留历史数据。技术选型:使用AWSGlueETL作业(PySpark)目标存储:S3(Parquet格式)或AmazonRedshift数据比对方式:基于业务键(如custom
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多