- 《开局叛出宗门修为被废后他成仙了》沐清绾魂宇_(开局叛出宗门修为被废后他成仙了)全集在线阅读
热门小说_1
这本小说主要讲述了婚礼上,妻子把新郎扔在一旁,只为了照顾小师弟,宗门中人也未出席庆祝。重生后,他决定不再执着于那段感情,废除婚约,背离宗门,独自追求修炼之路。当他取得辉煌成就,那些后悔的人已无法挽回他的心。《开局叛出宗门修为被废后他成仙了》沐清绾魂宇_(开局叛出宗门修为被废后他成仙了)全集在线阅读书名:开局叛出宗门修为被废后他成仙了主角:沐清绾魂宇秦老怅然若失,心底竟然生出一股心悸的错觉,在看向魂
- OpenCV —— contours_matrix_()_[]
大魔王(已黑化)
visionopencv人工智能计算机视觉
️️️️Takeyourtime!️️️️个人主页:大魔王所属专栏:魔王的修炼之路–Computervision如果你觉得这篇文章对你有帮助,请在文章结尾处留下你的点赞和关注,支持一下博主。同时记得收藏✨这篇文章,方便以后重新阅读。文章目录检测轮廓numpy创建矩阵与数组三种图像的区别及转换()与[]应用检测轮廓importcv2importnumpyasnpcv2.namedWi
- OpenCV —— color_matrix_numpy_mat_reshape
大魔王(已黑化)
visionopencvnumpy人工智能
️️️️Takeyourtime!️️️️个人主页:大魔王所属专栏:魔王的修炼之路–Computervision如果你觉得这篇文章对你有帮助,请在文章结尾处留下你的点赞和关注,支持一下博主。同时记得收藏✨这篇文章,方便以后重新阅读。文章目录颜色空间解释numpy与颜色空间图像的本质三种图像总结numpy本质Matnp.ndarray彩色图像灰度图像二值图像NumPy主要能干啥?re
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- MikroTik RouterOS 6.49.2 x86_64架构 L6全功能版本
伍熠逸Peg
MikroTikRouterOS6.49.2x86_64架构L6全功能版本【下载地址】MikroTikRouterOS6.49.2x86_64架构L6全功能版本这是一个基于MikroTikRouterOS6.49.2的OVA虚拟机版本,专为x86_64架构设计,搭载L6级全功能许可,支持升级至7.x版本。该版本已集成vmxnet3万兆网卡驱动,并支持2GB以上内存,适用于VMwareWorksta
- uni-app中view和text组件和动画的使用
uni-app修炼之路(七)viewtext参考官方文档:https://uniapp.dcloud.io/component/viewview视图容器。它类似于传统html中的div,用于包裹各种元素内容。如果使用nvue,则需注意,包裹文字应该使用组件。属性说明属性名类型默认值说明hover-classStringnone指定按下去的样式类。当hover-class=“none”时,没有点击态
- pytorch深度学习入门(12)之-神经网络导出onnx模型部署与应用
码农呆呆
深度学习深度学习pytorch神经网络
概述:ONNX(OpenNeuralNetworkExchange)是一种开放神经网络交换格式,它使得不同深度学习框架(如TensorFlow、PyTorch、MXNet等)之间的互操作成为可能。ONNX提供了一种标准化的方式,可以将训练好的模型导出并转换为ONNX格式,然后可以在其他支持ONNX的框架或工具中进行部署和推理。ONNX的主要优势在于它促进了深度学习模型在不同平台之间的互操作性和可移
- 《动手学深度学习》-2.1. 数据操作
SSWDUT
动手学深度学习深度学习人工智能
2.1.数据操作为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。如果没有某种方法来存储数据,那么获取数据是没有意义的。首先,我们介绍n维数组,也称为张量(tensor)。使用过Python中NumPy计算包的读者会对本部分很熟悉。无论使用哪个深度学习框架,它的张量类(在MXNet中为ndarray,在P
- MXNet深度学习框架入门指南:核心概念与架构解析
陆璞朝Jocelyn
MXNet深度学习框架入门指南:核心概念与架构解析mxnet项目地址:https://gitcode.com/gh_mirrors/mx/mxnet什么是MXNetApacheMXNet是一个开源的深度学习框架,它提供了全面而灵活的API来创建深度学习模型。作为现代深度学习的重要工具,MXNet在工业界和学术界都得到了广泛应用。MXNet的核心优势高性能与可扩展性:原生支持多GPU和分布式多主机任
- Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进
陆或愉
Dive-into-DL-PyTorch项目解析:目标检测中的R-CNN系列算法演进Dive-into-DL-PyTorch本项目将《动手学深度学习》(DiveintoDeepLearning)原书中的MXNet实现改为PyTorch实现。项目地址:https://gitcode.com/gh_mirrors/di/Dive-into-DL-PyTorch引言目标检测是计算机视觉领域的核心任务之一
- 解决Linux服务器MXNet安装与`npx`模块问题
cocogogogo
服务器linuxmxnet
解决Linux服务器MXNet安装与npx模块问题背景在Ubuntu18.04服务器上,通过Mac终端在pytorch_env(Python3.9.21)中解决MXNet相关错误,最终实现npx模块使用。问题及解决步骤1.问题:AttributeError:module'numpy'hasnoattribute'bool'环境:MXNet1.5.1,NumPy1.24.4。原因:NumPy1.20
- EXO:模型最终验证的地方;infer_tensor;step;MLXDynamicShardInferenceEngine
ZhangJiQun&MXP
2024大模型以及算力2021AIpython教学语言模型transformer人工智能
目录EXO:模型最终验证的地方EXO:infer_tensorEXO:stepMXNet的mx.array类型是什么NDArray优化了什么1.异步计算和内存优化2.高效的数学和线性代数运算3.稀疏数据支持4.自动化求导举例说明EXO:模型最终验证的地方EXO:infer_tensor这段代码定义了一个名为infer_tensor的异步方法,它属于某个类(虽然类名未在此代码段中给出)。这个方法的目
- 23.Python修炼之路【27-树】2018.05.23
youyouwuxin1234
Python数据结构与算法
树与树算法树的概念树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:每个节点有零个或多个子节点;没有父节点的节点称为根节点;每一个非根节点有且只有一个父节点;除了根节点外,每个子
- 深度学习模型优化与行业应用新突破
智能计算研究中心
其他
内容概要当前深度学习模型优化正经历多维技术革新,核心突破集中在算法效率与场景适配性提升。以自适应学习优化和超参数调优为代表的动态调整机制,显著降低了模型训练对人工经验的依赖。主流框架如MXNet与PyTorch在分布式计算、自动微分等关键能力上形成差异化优势(见表1),而边缘计算与联邦学习的融合,则通过本地化数据处理与隐私保护机制,为医疗影像诊断、金融风险预测等高敏感场景提供了可信部署方案。框架特
- 模型优化技术驱动行业应用创新
智能计算研究中心
其他
内容概要当前模型优化技术正通过多维度创新重构行业应用版图。从底层框架演进看,TensorFlow、PyTorch与MXNet等主流工具通过自适应学习机制与参数化建模能力,显著提升了模型训练效率;而在技术融合层面,联邦学习与边缘计算的协同部署方案,为解决数据隐私与算力瓶颈提供了新范式。与此同时,量子计算驱动的新型优化算法正突破传统数学模型的性能边界,结合可解释性增强与超参数动态调整策略,使医疗诊断、
- 智能模型优化趋势与行业实践突破
智能计算研究中心
其他
内容概要当前智能模型优化技术正沿着多维度路径加速演进,其中自动化机器学习(AutoML)与可解释性模型的融合成为降低技术门槛的核心方向。从技术演进路径来看,边缘计算与联邦学习的结合显著提升了分布式场景下的模型效率,而量子计算的引入则为复杂优化问题提供了突破性思路。与此同时,MXNet、PyTorch等主流框架在动态计算图与分布式训练方面的创新,进一步推动了行业模型的快速迭代。为系统呈现技术趋势与实
- 模型优化技术演进与行业场景突破
智能计算研究中心
其他
内容概要模型优化技术正经历从算法改进到系统级创新的范式跃迁。随着自动化机器学习(AutoML)与联邦学习技术的成熟,模型开发效率与隐私保护能力显著提升,而模型压缩技术则推动轻量化部署在边缘计算场景中加速落地。与此同时,量子计算为优化算法提供了新的计算维度,MXNet、PyTorch等框架通过动态计算图特性,在医疗影像识别和语音交互领域实现推理速度的突破性进展。技术演进阶段核心技术突破典型应用场景主
- 智能模型优化与跨行业应用趋势
智能计算研究中心
其他
内容概要智能模型优化技术正经历多维度的范式突破,从算法架构到部署模式均呈现显著变革。核心演进路径涵盖三大维度:在技术层,自动化机器学习(AutoML)与自适应学习优化技术大幅降低建模门槛,结合超参数优化与正则化方法,实现模型性能与效率的平衡;在架构层,边缘计算与联邦学习推动分布式模型部署,MXNet、PyTorch等框架通过模型压缩与量化技术,适配低功耗设备部署需求;在应用层,医疗诊断、金融预测等
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 【C++修炼之路】C++动态内存管理
f狐0狸x
【c++修炼之路】c++开发语言c语言数据结构
️专栏:【C++修炼之路】主页:f狐o狸x“于高山之巅,方见大河奔涌;于群峰之上,更觉长风浩荡”目录一、C++内存管理方式1.1new/delete处理内置类型1.2new/delete处理自定义类型二、operatornew与operatordelete函数三、new和delete的实现原理3.1内置类型3.2自定义类型new的原理delete的原理newT[N]的原理delete[]的原理C
- AI学习预备知识-数据操作(5)内存节省
羞涩的小吉他
AI开发学习之路人工智能学习
AI学习预备知识-数据操作(5)内存节省提示:本系列持续更新中文章目录AI学习预备知识-数据操作(5)内存节省前言内存节省总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,本文主要讲解AI学习储备知识–在数据操作过程中所需考虑到的内存节省。内存节省提示:默认使用python,数据操作使用mxnet在数据操作过程中运行一些操作可能会导致
- 蚂蚁集团可转正实习算法岗内推-自然语言
飞300
业界资讯自然语言处理
具备极佳的工程实现能力,精通C/C++、Java、Pvthon、Perl等至少一门语言:对目前主流的深度学习平台:tensorflow、pytorch、mxnet等,至少对其中一个有上手经验;熟悉深度学习以及常见机器学习算法的原理与算法,能熟练运用聚类、分类、回归、排序等模型解决有挑战性的问题,有大数据处理的实战经验;有强烈求知欲,对人工智能领域相关技术有热情,内推链接:https://u.ali
- 跨框架模型演进与行业应用路径
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,模型框架的演进与行业应用的深度融合已成为推动产业智能化升级的核心驱动力。本文系统性梳理TensorFlow、PyTorch、MXNet等主流框架的技术发展脉络,重点分析其从通用计算架构向多模态、轻量化方向的转型路径。同时,针对模型优化技术领域,深入探讨迁移学习、超参数调优及模型压缩等方法的创新突破,揭示其在降低计算资源消耗、提升推理效率方面的关键作用。在行业
- Processing模块的全面应用指南:从此踏上Processing斗帝的修炼之路,接单代做不再遥远!
帅小柏
processing
Processing模块的全面应用指南在这篇文章中,我们将探索如何在Processing中使用各种模块来创建互动和视觉效果,包括麦克风输入、字体处理、音乐轮播、图片和视频播放以及粒子系统的应用。每个模块都将展示其全局变量、setup()和draw()函数的实现,并通过实例代码详细说明。processing模块Processing模块的全面应用指南1.麦克风输入全局变量`setup()``draw(
- Java部署机器学习模型:方案二(基于DJL)
iiilloi
机器学习springspringboot
DJL(DeepJavaLibrary)是由亚马逊公司开发的一款开源的深度学习框架,它旨在为Java开发人员提供一个简单而强大的API,使得在Java中使用深度学习变得更加容易。DJL有以下几个方面优势:支持多个底层引擎DJL支持多个底层引擎,包括MXNet、TensorFlow和PyTorch等。这使得DJL可以在多个平台上使用,包括Java、Android、iOS和RaspberryPi等。易
- Apache MXNet:灵活高效的深度学习库
零 度°
python深度学习apachemxnet
ApacheMXNet是一个开源的深度学习框架,适用于灵活的研究原型设计和生产。它提供了一个混合前端,可以无缝地在Gluon(动态图)和Symbolic(静态图)模式之间转换,以提供灵活性和速度。MXNet支持多种语言绑定,包括Python、Scala、Julia、Clojure、Java、C++、R和Perl,并且拥有一个活跃的工具和库生态系统,可以扩展MXNet的功能,支持计算机视觉、自然语言
- Apache MXNet 深度学习框架教程
娄妃元Kacey
ApacheMXNet深度学习框架教程mxnetLightweight,Portable,FlexibleDistributed/MobileDeepLearningwithDynamic,Mutation-awareDataflowDepScheduler;forPython,R,Julia,Scala,Go,Javascriptandmore项目地址:https://gitcode.com/g
- Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)
盼小辉丶
julia深度学习cmakelinuxmxnetjulialanguage深度学习
Ubuntu为julia安装深度学习框架MXNet(支持CUDA和OPenCV编译)环境介绍与注意事项下载源文件安装依赖编译环境配置安装MXNet测试后记环境介绍与注意事项Ubuntu18.04julia1.5.3CUDA10.1(为了GPU支持,需要安装CUDA和cudnn,可以参考博客,若CUDA版本不同,参考此网站下载合适的MXNet版本)安装MXNet的julia绑定,经过多次测试,并不能
- MXNet深度学习框架:高效与灵活性的结合
原机小子
深度学习mxnet人工智能
标题:MXNet深度学习框架:高效与灵活性的结合MXNet是一个由Apache软件基金会支持的开源深度学习框架,以其高效性能和灵活性而闻名。它最初由亚马逊团队开发,并于2015年开源,迅速成为深度学习领域的一个重要工具。MXNet支持多种编程语言,包括Python、Java、Scala、R、C++等,能够运行在CPU、GPU和云平台上,满足不同场景下的需求。1.MXNet的核心特性MXNet的主要
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置