- 计算机视觉:少样本学习(Few-Shot Learning)在视觉中的应用
xcLeigh
计算机视觉CV计算机视觉学习人工智能FSLAI
计算机视觉:少样本学习(Few-ShotLearning)在视觉中的应用一、前言二、少样本学习基础概念2.1定义与范畴2.2与传统机器学习对比2.3核心挑战三、少样本学习在计算机视觉中的典型应用3.1图像分类3.1.1新类别识别3.1.2医学图像分类3.2目标检测3.2.1新目标检测3.2.2小目标检测3.3图像分割3.3.1医学图像分割3.3.2工业缺陷检测四、少样本学习在计算机视觉中的技术方法
- 【图像分割】基于模糊聚类FCM和改进的模糊聚类算法实现CT图像分割matlab代码
天天Matlab科研工作室
图像处理Matlab各类代码算法聚类matlab
1简介医学影像分割的基本目标是将图像分割成不同的解剖组织,从而可以从背景中提取出感兴趣区域。因为图像的低分辨率和弱对比度,实现医学影像分割是一件具有挑战的任务。而且,这个任务由于噪声和伪阴影变得更加困难,这些干扰项可能是因器材限制、重建算法和患者移动等原因造成的。目前还没有通用的医学图像分割算法,算法的优点和缺点经常根据所研究的问题而变化。将分割概念具体到颅内出血CT图像上,就是将颅腔中的出血病灶
- Unet源码实现(pytorch)
wyn20001128
pytorch人工智能python
U-Net是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网络设计来提高分割精度。主要贡献U-Net的主要贡献包括:1、数据增强策略:使用随机弹性变形和其他形式的数据增强来增加训练数据的多样性,从而在有限的数据集上训练出更强大的模型。2、U形网络结
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- UNet改进(5):线性注意力机制(Linear Attention)-原理详解与代码实现
摸鱼许可证
人工智能计算机视觉
引言在计算机视觉领域,UNet架构因其在图像分割任务中的卓越表现而广受欢迎。近年来,注意力机制的引入进一步提升了UNet的性能。本文将深入分析一个结合了线性注意力机制的UNet实现,探讨其设计原理、代码实现以及在医学图像分割等任务中的应用潜力。UNet架构概述UNet最初由Ronneberger等人提出,主要用于生物医学图像分割。其独特的U形结构由编码器(下采样路径)和解码器(上采样路径)组成,通
- 医图论文 AAAI‘25 | VOILA: 基于体素与语言交互的复杂度感知CT图像通用分割方法
小白学视觉
医学图像处理论文解读人工智能计算机视觉医学图像处理论文解读深度学习AAAI
论文信息题目:VOILA:Complexity-AwareUniversalSegmentationofCTimagesbyVoxelInteractingwithLanguageVOILA:基于体素与语言交互的复杂度感知CT图像通用分割方法作者:ZishuoWan,YuGao,WanyuanPang,DaweiDing论文创新点引入体素级对比学习:本文首次将体素级对比学习引入医学图像分割任务。通
- 医图论文 Arxiv‘24 | SEG-SAM:用于统一医学图像分割的语义引导SAM
小白学视觉
医学图像处理论文解读医学图像处理医学图像顶会Arxiv论文解读深度学习
论文信息题目:SEG-SAM:Semantic-GuidedSAMforUnifiedMedicalImageSegmentationSEG-SAM:用于统一医学图像分割的语义引导SAM作者:ShuangpingHuang,HaoLiang,QingfengWang,ChulongZhong,ZijianZhou,MiaojingShi论文创新点语义感知解码器:作者提出了一个独立的语义感知解码器(
- nnUNet V2修改网络——暴力替换网络为Swin-Unet
w1ndfly
nnU-NetV2修改网络nnunet深度学习人工智能机器学习nnunetv2
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。Swin-Unet是一种基于纯Transformer的U型编码器-解码器架构,专为医学图像分割任务设计。传统方法主要依赖卷积神经网络(CNN),尤其是U-Net及其变体,通过局部卷积操作和跳跃连接提取多尺度特征。然
- 跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
Title题目Cross-viewdiscrepancy-dependencynetworkforvolumetricmedicalimagesegmentation跨视角差异-依赖网络用于体积医学图像分割01文献速递介绍医学图像分割旨在从原始图像中分离出受试者的解剖结构(例如器官和肿瘤),并为每个像素分配语义类别,这在许多临床应用中起着至关重要的作用,如器官建模、疾病诊断和治疗规划(Shamsh
- 干货分享 | 关于 UNet 架构的8个热门面试问题
老唐777
人工智能机器学习深度学习计算机视觉图像处理面试python
前言UNet架构是专门为图像分割任务设计的深度学习模型。由于其能够处理高分辨率图像并生成准确的分割图,因此广泛应用于各种应用,例如医学图像分割、卫星图像分析和自动驾驶车辆中的目标检测。UNet非常适合多类图像分割任务,但可能需要平衡训练数据或使用概率分割图来处理类重叠或不平衡的类分布。本文主要介绍关于UNet架构的8个热门面试问题,希望对你有所帮助。资料分享正式开始之前,为了方便大家学习,我整理了
- YOLOv10改进 | Conv篇 | YOLOv10添加Mamba模块 (Mamba-Yolov10为目标检测、医学图像分割等任务带来新的发展和进步)
Ai缝合怪YOLO涨点改进
YOLOv8v10YOLOv8YOLO目标检测人工智能计算机视觉yolov8yolov10mamba
YOLOv8v10专栏限时99元订阅链接:限时99元去b站关注:AI缝合怪订阅YOLOv8v10创新改进高效涨点+持续改进300多篇(订阅的小伙伴,终身免费享有后续YOLOv11或是其他版本的改进专栏)目录一、Mamba模块介绍VSSmamba模块结构mamba模块动机CNN主要局限性:Transformer主要局限性:二、VSS模块核心代码三、手把手教你添加VSSBlock模块和修改task.p
- nnUNet V2修改网络——暴力替换网络为UCTransNet
w1ndfly
nnU-NetV2修改网络nnU-NetV2nnunet深度学习计算机视觉机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。UCTransNet是一种创新的医学图像分割网络,它重新思考了U-Net中的跳跃连接设计。该网络以U-Net为基础架构,引入了通道变换器(CTrans)模块,专门用于替代传统的跳跃连接。其核心在于多尺度通道交叉融合
- UNet 改进(26):与FPN结合的图像分割网络
点我头像干啥
Unet模型改进transformer深度学习人工智能
1.介绍在计算机视觉领域,图像分割是一个核心任务,而UNet架构因其优异的性能在医学图像分割等领域广受欢迎。本文将详细解析一个结合了UNet和特征金字塔网络(FPN)的创新架构,展示如何通过融合两种经典网络的优势来提升分割性能。网络架构概述这个代码实现了一个结合UNet和FPN的混合架构,主要包含以下几个关键组件:DoubleConv模块:基础的双卷积块FPN模块:特征金字塔网络UNetWithF
- 【计算机视觉】OpenCV项目实战:基于OpenCV的图像分割技术深度解析与实践指南
白熊188
计算机视觉计算机视觉opencv人工智能
基于OpenCV的图像分割技术深度解析与实践指南项目概述与技术背景项目核心特点传统分割算法分类环境配置与项目结构系统要求安装步骤项目结构解析核心算法实现解析1.阈值分割(Otsu方法)2.Canny边缘检测3.分水岭算法实战应用指南1.基础分割流程2.多算法比较框架3.医学图像分割专项常见问题与解决方案1.过分割问题2.边缘断裂问题3.光照不均影响性能优化技巧1.多尺度处理2.ROI优先处理3.并
- ERDUnet: An Efficient Residual Double-codingUnet for Medical Image Segmentation
医学分割哇哇哇哇哇哇哇哇哇
机器学习人工智能
ERDUnet:一种用于医学图像分割的高效残差双编码单元摘要医学图像分割在临床诊断中有着广泛的应用,基于卷积神经网络的分割方法已经能够达到较高的准确率。然而,提取全局上下文特征仍然很困难,而且参数太大,无法临床应用。为此,我们提出了一种新的网络结构来改进传统的编码器-解码器网络模型,在保持分割精度的同时节省了参数。通过构造一个能够同时提取局部特征和全局连续性信息的编码器模块,提高了特征提取效率。设
- UNet 改进(24):结合金字塔(PSP)场景解析的医学图像分割网络
点我头像干啥
Unet模型改进网络人工智能计算机视觉
1.介绍在医学图像分割领域,UNet架构因其优异的性能而广受欢迎。今天我们要分析的UNet_PSP是一个改进版的UNet,它在传统UNet的基础上引入了金字塔场景解析模块(PSP),以更好地捕获多尺度上下文信息。本文将详细解析这个网络的架构设计、核心组件和实现细节。UNet_PSP整体保持了UNet的经典编码器-解码器结构,但在最底层的瓶颈层加入了PSP模块。这种设计结合了UNet的精确定位能力和
- 在 AutoDL 平台配置 U-Mamba 环境并训练医学图像分割
吖查
深度学习人工智能计算机视觉自然语言处理cnn
在AutoDL平台配置U-Mamba环境并训练医学图像分割相关数据和离线依赖包,网盘下载链接链接:https://pan.baidu.com/s/1DNjtsDJOlN_4l4Vr0y9tNg?pwd=bz95提取码:bz95视频版环境配置教程来源https://blog.csdn.net/weixin_45231460/article/details/138862816U-Mamba项目地址ht
- MIA 2025 | 利用标记数据知识:一种用于半监督3D医学图像分割的协同校正学习网络
小白学视觉
医学图像处理论文解读MIA深度学习论文解读医学图像处理医学图像顶刊
论文信息题目:Leveraginglabelleddataknowledge:Acooperativerectificationlearningnetworkforsemi-supervised3Dmedicalimagesegmentation利用标记数据知识:一种用于半监督3D医学图像分割的协同校正学习网络作者:YanyanWang,KechenSong,YuyuanLiu,ShuaiMa,Y
- 看病不求医,基于HAI在JupyterLab中用U-Net实现病灶识别
不惑_
教你学习大模型系列人工智能机器学习自然语言处理
从医生到AI在肿瘤医院的阅片室里,王医生正聚精会神地盯着CT影像。她需要从数百张断层扫描图中,手工勾画出患者肺部的肿瘤区域。这项工作不仅耗时费力,更要求医生保持高度专注——一个细微的漏判就可能影响治疗方案的选择。这样的场景每天都在全球各大医院上演,直到AI技术的出现带来转机。医学图像分割技术通过深度学习算法,可以自动识别影像中的特定解剖结构或病变区域。其中,U-Net模型因其在生物医学图像分割中的
- 【SAM医学分割】重新思考基础模型时代的半监督医学图像分割技术
AI_Med
SAM医学图像分割最新医学半监督分割人工智能
基于深度学习的医学图像分割通常需要大量标注数据进行训练,由于标注成本较高,因此在临床环境中的应用较少。与完全监督方法相比,半监督学习(SSL)对从专家那里获取大量注释的依赖性较低,因此成为一种颇具吸引力的策略。除了现有的以模型为中心、设计新颖正则化策略的半监督学习(SSL)进步之外,由于可提示分割基础模型的出现,该模型具有通用分割能力,可使用以任意分割模型(SAM)为代表的位置提示。在本文中,介绍
- U-Net架构
整点薯条吃吃喽
人工智能深度学习
基本了解UNet是一种经典的卷积神经网络架构,解决了传统方法在数据量不足时面临的挑战。最初由医学图像分割任务提出,后被广泛应用于扩散模型(如DDPM、DDIM、StableDiffusion)中作为噪声预测的核心网络。核心结构包括一个收缩路径(downsamplingpath)和一个对称的扩展路径(upsamplingpath)。收缩路径通过多次下采样操作捕获上下文信息,而扩展路径则通过上采样操作
- U-net系列算法解析:医学图像分割的利器
不要天天开心
机器学习算法图像处理深度学习算法
U-net凭借其独特的编码器-解码器结构和特征拼接操作,成为图像分割领域的经典模型。其核心通过下采样提取特征,再通过上采样恢复分辨率,结合跳跃连接融合多尺度信息,兼顾效率与精度,尤其适合医学图像数据量少、目标复杂的场景。U-net++在原始基础上引入密集跳跃连接,类似DenseNet思想,全面融合不同层级的特征,提升分割细节。同时,通过深度监督实现多层级联合训练,增强模型鲁棒性,并支持灵活剪枝以适
- Python小项目:利用U-net完成细胞图像分割
利用U-Net完成细胞图像分割的详细指南在生物医学领域,细胞图像分割是一个关键步骤,能够帮助研究人员分析细胞结构和功能。U-Net作为一种强大的卷积神经网络结构,广泛应用于医学图像分割任务。本文将详细介绍如何利用U-Net完成细胞图像分割项目,涵盖从数据准备到模型部署的各个步骤。项目步骤概览数据准备数据预处理构建U-Net模型训练模型模型评估图像分割结果可视化调优和优化部署和应用1.数据准备收集数
- 医图论文 AAAI‘25 | FAMNet: 跨域少样本医学图像分割的频率感知匹配网络
小白学视觉
医学图像处理论文解读医学图像处理论文解读AAAI医学图像顶会深度学习
论文信息题目:FAMNet:Frequency-awareMatchingNetworkforCross-domainFew-shotMedicalImageSegmentationFAMNet:跨域少样本医学图像分割的频率感知匹配网络作者:YuntianBo,YazhouZhu,LunboLi,HaofengZhang源码:https://github.com/primebo1/FAMNet论文
- YOLO11改进-模块-引入CMUNeXt Block 增强全局信息
一勺汤
YOLOv11模型改进系列网络YOLO目标检测模块魔改YOLOv11YOLOV11模型改进
在医学图像分割领域面临诸多问题,如U形架构卷积网络难以提取全局信息,混合架构因计算资源受限在实际医疗场景应用受阻,轻量化网络在保证性能与提取全局信息上存在矛盾。因此,设计了CMUNeXtBlock,CMUNeXtBlock采用大核深度可分离卷积替代普通卷积来提取全局信息,凭借深度可分离卷积减少参数和计算成本以维持轻量化,同时综合利用卷积归纳偏置和全局信息提取能力,有效解决了这些问题。代码:http
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- nnUNet V2修改网络——替换为U-Net V2
w1ndfly
nnU-NetV2修改网络人工智能深度学习计算机视觉卷积神经网络机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。U-NetV2是一种先进的医学图像分割模型,它通过改进的跳跃连接和语义细节注入(SDI)模块,有效地融合了高级语义信息和低级细节信息,从而显著提升了分割精度。相比原始U-Net,U-NetV2在多个数据集上表现出更
- 医学顶会 MICCAI‘24 | LKM-UNet: 大型内核视觉 Mamba UNet 用于医学图像分割
小白学视觉
医学图像处理论文解读MICCAI深度学习医学图像顶会医学图像处理论文解读
本文内容只为星球内部成员学习和学术交流,请勿用作他用本文内容只为星球内部成员学习和学术交流,请勿用作他用论文信息题目:LKM-UNet:LargeKernelVisionMambaUNetforMedicalImageSegmentationLKM-UNet:大型内核视觉MambaUNet用于医学图像分割作者:JinhongWang,JintaiChen,DannyChen,JianWu源码链接:
- U-Net 生物医学图像分割开源项目介绍
祝珺月
U-Net生物医学图像分割开源项目介绍unetU-NetBiomedicalImageSegmentation项目地址:https://gitcode.com/gh_mirrors/une/unet1.项目基础介绍及主要编程语言U-Net是由IntelAI开发的一个生物医学图像分割的开源项目。该项目基于TensorFlow和Keras框架,使用Python语言编写,旨在为医学图像分析提供高效的解决
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方