又叫折半查找,要求待查找的序列有序。每次取中间位置的值与待查关键字比较,如果中间位置的值比待查关键字大,则在前半部分循环这个查找过程,如果中间位置的值比待查关键字小,则在后半部分循环这个查找的过程。直到查找到了为止,否则序列中没有待查的关键字。
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1、如果元素大小关系不正确,交换这两个数(在本例中为a> b),
2、比较一对相邻元素(a,b),
3、重复步骤1和2,直到我们到达数组的末尾(最后一对是第(N-2)和(N-1)项,因为我们的数组从零开始)
4、到目前为止,最大的元素将在最后的位置。 然后我们将N减少1,并重复步骤1,直到N = 1。
(1)比较前后相邻的两个数据,如果前面数据大于后面的数据,就将这两个数据交换。
(2)这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置。
(3)N=N-1,如果N不为0就重复前面二步,否则排序完成。
import java.util.Scanner;
/**
* @Author: ChaoKeAiMuZhi
* @Date: 2020/7/11 18:52
* @Description:18、 冒泡排序法:比较两个相邻的元素,将值大的元素交换到右边
* 程序分析:01.外层循环N-1 (N:数的个数)
* 02.内层循环N-1-i (i:比较的轮数,外层循环的变量)
* 03.两两相比 小靠前!必须进行等量转换!互换位置!
**/
public class Test18 {
public static void main(String[] args) {
System.out.println("请输入多少个数进行排序:");
Scanner sc=new Scanner(System.in);
int N = sc.nextInt();
int[] num=new int[N];
for (int i = 0; i <=N-1 ; i++) {
System.out.println("请输入第" + (i + 1) + "个数");
num[i] = sc.nextInt();
}
for (int i = 0; i <=N-1 ; i++) {
for (int j = 1; j <=N-1-i ; j++) {
if(num[j-1]>num[j]){
num[j-1]+=num[j];
num[j]=num[j-1]-num[j];
num[j-1]=num[j-1]-num[j];
}
}
}
System.out.println("从小到大排序为:");
for (int i = 0; i <=N-1 ; i++) {
System.out.print(num[i]+" ");
}
}
}
选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
1、在 [L … N-1] 范围内找出最小项目 X 的位置,
2、用第 L 项交换X,
3、将下限 L 增加1并重复步骤1直到 L = N-2。
插入排序(Insertion sort)是一种简单直观且稳定的排序算法。如果有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序,这个时候就要用到一种新的排序方法——插入排序法,插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
1、从第一个元素开始,该元素可以认为已经被排序;
2、取出下一个元素,在已经排序的元素序列中从后向前扫描;
3、如果该元素(已排序)大于新元素,将该元素移到下一位置;
4、重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
5、将新元素插入到该位置后;
6、重复步骤2~5。
通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序非常类似于整扑克牌,开始摸牌时,左手是空的,牌面朝下放在桌上。接着,一次从桌上摸起一张牌,并将它插入到左手一把牌中的正确位置上。为了找到这张牌的正确位置,要将它与手中已有的牌从右到左地进行比较。无论什么时候,左手中的牌都是排好序的。
如果输入数组已经是排好序的话,插入排序出现最佳情况,其运行时间是输入规模的一个线性函数。如果输入数组是逆序排列的,将出现最坏情况。平均情况与最坏情况一样,其时间代价是(n2)。
import java.util.Arrays;
/**
* @Author: ChaoKeAiMuZhi
* @Date: 2020/7/14 22:20
* @Description:
**/
public class Homework3 {
public static void main(String[] args) {
int[] a={1,3,2,8,5,4};
for (int i = 1; i <a.length ; i++) {
int tmp=a[i];
int j = i-1;
for (; j >=0 && a[j]>tmp ; j--) {
a[j+1]=a[j];
}
a[j+1]=tmp;
}
System.out.println(Arrays.toString(a));
}
}
快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
1、从数列中挑出一个元素,称为 “基准”(pivot);
2、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
3、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
快速排序的原理:选择一个关键值作为基准值。比基准值小的都在左边序列(一般是无序的),比基准值大的都在右边(一般是无序的)。一般选择序列的第一个元素。
一次循环:从后往前比较,用基准值和最后一个值比较,如果比基准值小的交换位置,如果没有继续比较下一个,直到找到第一个比基准值小的值才交换。找到这个值之后,又从前往后开始比较,如果有比基准值大的,交换位置,如果没有继续比较下一个,直到找到第一个比基准值大的值才交换。直到从前往后的比较索引〉从后往前比较的索引,结束第一次循环,此时,对于基准值来说,左右两边就是有序的了。
希尔排序(Shell’s Sort)是插入排序的一种又称“缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因D.L.Shell于1959年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
1、选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
2、按增量序列个数k,对序列进行k 趟排序;
3、每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
基本思想:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录"基本有序”时,再对全体记录进行依次直接插入排序。
操作方法:
选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
按增量序列个数k,对序列进行k趟排序;
每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对各子表进行直接插入排序。仅增量因子为1时,整个序列作为一个表来处理,表长度即为整个序列的长度。
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
1、将每对单个元素(默认情况下,已排序)归并为2个元素的有序数组,
2、将2个元素的每对有序数组归并成4个元素的有序数组,重复这个过程…,
3、最后一步:归并2个N / 2元素的排序数组(为了简化讨论,我们假设N是偶数)以获得完全排序的N个元素数组。
归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
桶排序的基本思想是:把数组arr划分为n个大小相同子区间(桶)每个子区间各自排序,最后合并。计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。
找出待排序数组中的最大值max、最小值min
我们使用动态数组ArrayList作为桶,桶里放的元素也用ArrayList存储。桶的数量为(max-min)/arr.length+1
遍历数组arr,计算每个元素arr[i]放的桶
每个桶各自排序
将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
在搜索算法中优化中,剪枝,就是通过某种判断,避免一些不必要的遍历过程,形象的说,就是剪去了搜索树中的某些"枝条”,故称剪枝。应用剪枝优化的核心问题是设计剪枝判断方法,即
确定哪些枝条应当舍弃,哪些枝条应当保留的方法。
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就"回溯"返回,尝试别的路径。
从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法等
现在假设有一个很实际的问题:我们要在n个城市中建立一个通信网络,则连通这n个城市需要布置n-1一条通信线路,这个时候我们需要考虑如何在成本最低的情况下建立这个通信网?
于是我们就可以引入连通图来解决我们遇到的问题,n个城市就是图上的n个顶点,然后,边表示两个城市的通信线路,每条边上的权重就是我们搭建这条线路所需要的成本,所以现在我们有n个顶点的连通网可以建立不同的生成树,每一颗生成树都可以作为一个通信网,当我们构造这个连通网所花的成本最小时,搭建该连通网的生成树,就称为最小生成树。
构造最小生成树有很多算法,但是他们都是利用了最小生成树的同一种性质:MST性质(假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集,如果(u,v)是一条具有最小权值的边,其中u属于U,v属于V-U,则必定存在一颗包含边(u,v)的最小生成树),下面就介绍两种使用MST性质生成最小生成树的算法:普里姆算法和克鲁斯卡尔算法。