kruskal(克鲁斯卡尔)的思路很简单,自行google。
Java的kruskal实现起来有点麻烦,主要是边排序那里,我自己写了个MyEdge类继承comparable, 重写compareTo方法,然后再用Collections.sort()。。。用习惯了python,觉得java好啰嗦,实现一个想法要好久好绕。
package Graph;
import java.util.ArrayList;
import java.util.Collections;
public class Kruskal {
public static void main(String[] args) {
int[][] edges = {
{0, 1, 6},
{0, 2, 1},
{0, 3, 5},
{2, 1, 5},
{2, 3, 5},
{2, 4, 5},
{2, 5, 4},
{1, 4, 3},
{4, 5, 6},
{5, 3, 2}
};
int n = 6;
int[][] mstEdges = kruskal(n, edges);
int totalCost = 0;
System.out.println("Edges of MST: [node1, node2, cost]");
//输出构树的边集
for (int i = 0; i < mstEdges.length; i++) {
int[] edge = mstEdges[i];
for (int j = 0; j < edge.length; j++) {
System.out.print(edge[j] + " ");
}
totalCost += edge[2];
System.out.println();
}
System.out.println("Total cost of MST: " + totalCost);
}
public static int[][] kruskal(int n, int[][] edges) {
/**
* @Description: 克鲁斯卡尔算法求最小生成树
* @Param: [n, edges] ==> [结点个数, 边集]
* @return: int[] 构成最小生成树的边集
* @Author: Aiven
* @Date: 2019/6/27
*/
int[] pres = new int[n]; //并查集
int[] ranks = new int[n]; //结点的秩
// 初始化:pres一开始设置每个元素的上一级是自己,ranks一开始设置每个元素的秩为0
for (int i = 0; i < n; i++) {
pres[i] = i;
ranks[i] = 0;
}
//用自己定义的MyEdge类里面的compareTo排序,按边权排序
ArrayList<MyEdge> edgesList = new ArrayList<>();
for (int i = 0; i < edges.length; i++) {
edgesList.add(new MyEdge(edges[i]));
}
// 边集从小到大排序
Collections.sort(edgesList);
int[][] mstEdges = new int[n - 1][3];
int count = 0;
for (int i = 0; i < edgesList.size(); i++) {
int[] arr = edgesList.get(i).array;
int a = arr[0], b = arr[1], c = arr[2];
if (find(a, pres) != find(b, pres)) {
unionSet(a, b, pres, ranks);
mstEdges[count] = arr;
count++;
}
if (count == n) {
break;
}
}
return mstEdges;
}
//并:合并两个集合,按秩合并
public static void unionSet(int n1, int n2, int[] pres, int[] ranks) {
int root1 = find(n1, pres);
int root2 = find(n2, pres);
//当两个元素不是同一组的时候才合并
if (root1 != root2) {
if (ranks[root1] < ranks[root2]) {
pres[root1] = root2;
} else {
pres[root2] = root1;
if (ranks[root1] == ranks[root2])
ranks[root1]++;
}
}
}
//查:查找元素的首级
public static int find(int x, int[] pres) {
int root = x;
while (pres[root] != root)
root = pres[root];
//路径压缩
int p = x;
while (pres[p] != p) {
int t = pres[p];
pres[p] = root;
p = t;
}
return root;
}
}
// 边的排序类
class MyEdge implements Comparable {
int[] array;
MyEdge(int[] array) {
this.array = array;
}
@Override
public int compareTo(Object o) {
o = (MyEdge) o;
int[] arr = ((MyEdge) o).array;
if (array[2] > arr[2]) {
return 1;
} else if (array[2] == arr[2]) {
return 0;
} else {
return -1;
}
}
}
// std output
//
// Edges of MST: [node1, node2, cost]
// 0 2 1
// 5 3 2
// 1 4 3
// 2 5 4
// 2 1 5
// 0 0 0
// Total cost of MST: 15